Human emotion recognition has been a major field of research in the last decades owing to its noteworthy academic and industrial applications. However, most of the state-of-the-art methods identified emotions after analyzing facial images. Emotion recognition using electroencephalogram (EEG) signals has got less attention. However, the advantage of using EEG signals is that it can capture real emotion. However, very few EEG signals databases are publicly available for affective computing. In this work, we present a database consisting of EEG signals of 44 volunteers. Twenty-three out of forty-four are females. A 32 channels CLARITY EEG traveler sensor is used to record four emotional states namely, happy, fear, sad, and neutral of subjects by showing 12 videos. So, 3 video files are devoted to each emotion. Participants are mapped with the emotion that they had felt after watching each video. The recorded EEG signals are considered further to classify four types of emotions based on discrete wavelet transform and extreme learning machine (ELM) for reporting the initial benchmark classification performance. The ELM algorithm is used for channel selection followed by subband selection. The proposed method performs the best when features are captured from the gamma subband of the FP1-F7 channel with 94.72% accuracy. The presented database would be available to the researchers for affective recognition applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.