In order to mitigate economic and safety risks during mine life, a microseismic monitoring system is installed in a number of underground mines. The basic step for successfully analyzing those microseismic data is the correct detection of various event types, especially the rock mass rupture events. The visual scanning process is a time-consuming task and requires experience. Therefore, here we present a new method for automatic classification of microseismic signals based on the Gaussian Mixture Model-Hidden Markov Model (GMM-HMM) by using only Mel-frequency cepstral coefficient (MFCC) features extracted from the waveform. The detailed implementation of our proposed method is described. The performance of this method is tested by its application to microseismic events selected from the Dongguashan Copper Mine (China). A dataset that contains a representative set of different microseismic events including rock mass rupture, blasting vibration, mechanical drilling, and electromagnetic noise is collected for training and testing. The results show that our proposed method obtains an accuracy of 92.46%, which demonstrates the effectiveness of the method for automatic classification of microseismic data in underground mines.
The accurate location of induced seismicity is a problem of major interest in the safety monitoring of underground mines. Complexities in the seismic velocity structure, particularly changes in velocity caused by the progression of mining excavations, can cause systematic event mislocations. To address this problem, we present a novel construction method for an arbitrary 3D velocity model and a targeted hypocenter determination method based on this velocity model in underground mining. The method constructs a velocity model from 3D geological objects that can accurately express the interfaces of geologic units. Based on this model, the block corresponding to the minimum difference between the observed arrival times and the theoretical arrival times computed by the Fast Marching Method is located. Finally, a relocation procedure is carried out within the targeted block by heuristic algorithms to improve the performance. The accuracy and efficiency of the proposed method are demonstrated by the source localization results of both synthetic data and on-site data from Dongguashan Copper Mine. The results show that our proposed method significantly improves the location accuracy compared with the widely used Simplex and Particle Swarm Optimization methods.
The identification of suspicious microseismic events is the first crucial step in processing microseismic data. In this paper, we present an automatic classification method based on a deep learning approach for classifying microseismic records in underground mines. A total of 35 commonly used features in the time and frequency domains were extracted from waveforms. To examine the discriminative ability of these features, a genetic algorithm (GA)-optimized correlation-based feature selection (CFS) method was applied. As a result, 11 features were selected to represent microseismic records. By dividing each microseismic record into 50 frames, an 11 × 50 feature matrix was utilized as the input. A convolutional neural network (CNN) with 35 layers was trained on 20,000 samples recorded at the Huangtupo Copper and Zinc Mine. There are 5 types of events: microseismic events, blasting, ore extraction, mechanical noise, and electromagnetic interference. The event type was correctly determined by the trained CNN classifier 98.2% of the time, outperforming traditional machine learning methods.
The velocity model is a key factor that affects the accuracy of microseismic event location around tunnels. In this paper, we consider the effect of the empty area on the microseismic event location and present a 3D heterogeneous velocity model for excavated tunnels. The grid-based heterogeneous velocity model can describe a 3D arbitrarily complex velocity model, where the microseismic monitoring areas are divided into many blocks. The residual between the theoretical arrival time calculated by the fast marching method (FMM) and the observed arrival time is used to identify the block with the smallest residual. Particle swarm optimization (PSO) is used to improve the location accuracy in this block. Synthetic tests show that the accuracy of the microseismic event location based on the heterogeneous velocity model was higher than that based on the single velocity model, independent of whether an arrival time error was considered. We used the heterogeneous velocity model to locate 7 blasting events and 44 microseismic events with a good waveform quality in the Qinling No. 4 tunnel of the Yinhanjiwei project from 6 June 2017 to 13 June 2017 and compared the location results of the heterogeneous-velocity model with those of the single-velocity model. The results of this case study show that the events located by the heterogeneous velocity model were concentrated around the working face, which matched the actual conditions of the project, while the events located by the single-velocity model were scattered and far from the working face.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.