BackgroundDespite progress achieved in bladder cancer (BC) treatment, the prognosis of patients with advanced BC (ie, metastasized from the bladder to other organs) is poor. Although mortality in cases of low-grade BC is rare, the treatment, such as a radical cystectomy, often has a serious impact on the quality of life. Thus, research is needed to identify more effective treatment strategies and this work is aiming to examine the potential application of combination of radiofrequency ablation (RFA) and SB435142, a inhibitor of transforming growth factor β (TGFβ)/Smad pathway.MethodsBC cells were transplanted into nude mice (thymusdeficiency Bal B/c) to form subcutaneous tumors. The mice with subcutaneous tumors were then treated with RFA and oral administration of SB431542, an inhibitor of TGFβ/Smad signaling pathway. The antitumor effect of RFA was measured by tumor proliferation curves and micro-positron emission computed tomography (micro-PET). The effect of SB431542 on epithelial–mesenchymal transition (EMT) related regulators in subcutaneous tumor tissues formed by BC cells were examined by quantitative real-time polymerase chain reaction (qPCR) experiments.ResultsThe SB431542 treatment enhanced the antitumor effect of RFA on subcutaneous growth of BCs. SB431542 also decreased EMT-related regulators in subcutaneous tumor tissues formed by BC cells in nude mice.ConclusionSB431542 enhances the effect of RFA on BC.
The prognosis for endocrine-independent prostate carcinoma is still poor due to its highly metastatic feature. In the present work, TPX2 (the targeting protein for Xklp2), which is known as a micro-tubulin interacted protein, was identified as a novel coactivator of ETS-1, a transcription factor that plays a central role in mediating the metastasis of human malignancies. TPX2 enhanced the transcription factor activation of ETS-1 and increased the expression of ETS-1’s downstream metastasis-related genes, such as mmp3 or mmp9, induced by HGF (hepatocyte growth factor), a typical agonist of the HGF/c-MET/ETS-1 pathway. The protein-interaction between TPX2 and ETS-1 was examined using immunoprecipitation (IP). TPX2 enhanced the accumulation of ETS-1 in the nuclear and the recruitment of its binding element (EST binding site, EBS) located in the promoter region of its downstream gene, mmp9. Moreover, TPX2 enhanced the in vitro or in vivo invasion of a typical endocrine-independent prostate carcinoma cell line, PC-3. Therefore, TPX2 enhanced the activation of the HGF/ETS-1 pathway to enhance the invasion of endocrine-independent prostate carcinoma cells and thus it would be a promising target for prostate carcinoma treatment.
Prostate cancer remains a significant cause of cancer-related deaths in male population. More recently, accumulating evidence continues to implicate long noncoding RNAs (lncRNAs), microRNAs (miRNAs), and mRNAs in various types of cancers, including prostate cancer. The current study aimed to elucidate the role of lncRNA AGAP2-AS1/miR-195-5p/PDZ and LIM domain 5 (PDLIM5) in prostate cancer progression. Initially, microarray expression profiles were applied to screen differentially expressed lncRNAs/miRNAs/genes associated with prostate cancer. Dual-luciferase reporter and RNA pull-down/RIP assays were subsequently performed to explore the interactions among lncRNA AGAP2-AS1, miR-195-5p, and PDLIM5, after which their expression was detected in cancer tissues and cells. Next, gain-and loss-of-function approaches were employed to elucidate the mechanism of lncRNA AGAP2-AS1/miR-195-5p/PDLIM5 in the processes of cell proliferation, migration and invasion as well as tumor growth. LncRNA AGAP2-AS1 was found to be highly expressed in prostate cancer. Silencing of lncRNA AGAP2-AS1 contributed to the suppression of proliferation, migration and invasion of cancer cells in vitro. Besides, lncRNA AGAP2-AS1 could bind to miR-195-5p which targeted PDLIM5 and subsequently downregulated its expression, ultimately impeding the progression of prostate cancer. Additionally, lncRNA AGAP2-AS1 inhibition led to an up-regulated expression of miR-195-5p and down-regulated PDLIM5 expression, resulting in delayed tumor growth in vivo. Taken together, the key findings of our study demonstrated that lncRNA AGAP2-AS1 silencing exerted suppressive effects on the development of prostate cancer via the miR-195-5pdependent downregulation of PDLIM5. Our findings highlighted the potential of lncRNA AGAP2-AS1 as a promising novel molecular target for prostate cancer therapy.
The arachidonic acid (AA) metabolic pathway participates in various physiological processes as well as in the development of malignancies. We analyzed genomic alterations in AA metabolic enzymes in the Cancer Genome Atlas (TCGA) prostate cancer (PCa) dataset and found that the gene encoding soluble epoxide hydrolase ( EPHX2 ) is frequently deleted in PCa. EPHX2 mRNA and protein expression in PCa was examined in multiple datasets by differential gene expression analysis and in a tissue microarray by immunohistochemistry. The expression data were analyzed in conjunction with clinicopathological variables. Both the mRNA and protein expression levels of EPHX2 were significantly decreased in tumors compared with normal prostate tissues and were inversely correlated with the Gleason grade and disease-free survival time. Furthermore, EPHX2 mRNA expression was significantly decreased in metastatic and recurrent PCa compared with localized and primary PCa, respectively. In addition, EPHX2 protein expression correlated negatively with Ki67 expression. In conclusion, EPHX2 deregulation is significantly correlated with the clinical characteristics of PCa progression and may serve as a prognostic marker for PCa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.