Cell therapy for the treatment of cardiovascular disease has been hindered by low cell engraftment, poor survival, and inadequate phenotype and function. In this study, we added chitosan to a previously developed injectable collagen matrix, with the aim of improving its properties for cell therapy and neovascularization. Different ratios of collagen and chitosan were mixed and chemically crosslinked to produce hydrogels. Swell and degradation assays showed that chitosan improved the stability of the collagen hydrogel. In culture, endothelial cells formed significantly more vascular-like structures on collagen–chitosan than collagen-only matrix. While the differentiation of circulating progenitor cells to CD31+ cells was equal on all matrices, vascular endothelial-cadherin expression was increased on the collagen–chitosan matrix, suggesting greater maturation of the endothelial cells. In addition, the collagen–chitosan matrix supported a significantly greater number of CD133+ progenitor cells than the collagen-only matrix. In vivo, subcutaneously implanted collagen–chitosan matrices stimulated greater vascular growth and recruited more von Willebrand factor (vWF+) and CXCR4+ endothelial/angiogenic cells than the collagen-only matrix. These results indicate that the addition of chitosan can improve the physical properties of collagen matrices, and enhance their ability to support endothelial cells and angiogenesis for use in cardiovascular tissue engineering applications.
BackgroundIn patients with secondary (autoimmune) membranous nephropathy, two novel proteins, Exostosin 1 and Exostosin 2 (EXT1/EXT2), are potential disease antigens, biomarkers, or both. In this study, we validate the EXT1/EXT2 findings in a large cohort of membranous lupus nephritis.MethodsWe conducted a retrospective cohort study of patients with membranous lupus nephritis, and performed immunohistochemistry studies on the kidney biopsy specimens against EXT1 and EXT2. Clinicopathologic features and outcomes of EXT1/EXT2-positive versus EXT1/EXT2-negative patients were compared.ResultsOur study cohort included 374 biopsy-proven membranous lupus nephritis cases, of which 122 (32.6%) were EXT1/EXT2-positive and 252 (67.4%) were EXT1/EXT2-negative. EXT1/EXT2-positive patients were significantly younger (P=0.01), had significantly lower serum creatinine levels (P=0.02), were significantly more likely to present with proteinuria ≥3.5 g/24 h (P=0.009), and had significantly less chronicity features (glomerulosclerosis, P=0.001 or interstitial fibrosis and tubular atrophy, P<0.001) on kidney biopsy. Clinical follow-up data were available for 160 patients, of which 64 (40%) biopsy results were EXT1/EXT2-positive and 96 (60%) were EXT1/EXT2-negative. The proportion of patients with class 3/4 lupus nephritis coexisting with membranous lupus nephritis was not different between the EXT1/EXT2-positive and EXT1/EXT2-negative groups (25.0% versus 32.3%; P=0.32). The patients who were EXT1/EXT2-negative evolved to ESKD faster and more frequently compared with EXT1/EXT2-positive patients (18.8% versus 3.1%; P=0.003).ConclusionsThe prevalence of EXT1/EXT2 positivity was 32.6% in our cohort of membranous lupus nephritis. Compared with EXT1/EXT2-negative membranous lupus nephritis, EXT1/EXT2-positive disease appears to represent a subgroup with favorable kidney biopsy findings with respect to chronicity indices. Cases of membranous lupus nephritis that are EXT1/EXT2-negative are more likely to progress to ESKD compared with those that are EXT1/EXT2-positive.
The purpose of this study was to investigate whether an artificial matrix can help neonatal cardiomyocytes restore an injured heart in a rat model of myocardial infarction (MI). The left coronary arteries of female Sprague Dawley (SD) rats were ligated to create MI models. Ventricular cardiomyocytes from 1- to 3-day-old SD rats (both sexes) were isolated, cultured, and labeled. Three weeks after MI, the animals were randomized into four groups: (i) group cell plus matrix (n = 12); (ii) group cell (n = 12); (iii) group matrix (n = 12); and (iv) group control (n = 11). Four weeks after transplantation, echocardiography and the Langerdoff model were used to assess heart function. Immunohistochemical staining and polymerase chain reaction (PCR) were performed to track the implanted cardiomyocytes and detect the sex-determining region Y gene on the Y chromosome. Histology study and PCR showed that transplanted cardiomyocytes survived, formed condensed tissue, and produced connected protein in group cell plus matrix. Heart function assessment indicated transplantation of cardiomyocytes plus matrix preserved left ventricle wall thickness, fraction shortening, and end-systolic internal diameter most effectively.
Circulating progenitor cells home to and engraft to sites of ischemia, mediated in part by the adhesion molecule L-selectin; however, accumulation in tissues such as the heart is low. In this study, an acellular collagen-based matrix containing sialyl Lewis(X) (sLe(X)), which binds L-selectin, was developed in order to enhance the endogenous progenitor cell therapeutic response. Its effect on progenitor cells and angiogenesis were assessed in vitro and using a hindlimb ischemia model with rats. In culture, the sLe(X)-collagen matrix recruited more CD133(+)CD34(+)L-selectin(+) cells than collagen-only matrix, with adhesion mediated by L-selectin binding. Increased angiogenic/chemotactic cytokine production and improved resistance to apoptosis appeared in cells cultured on sLe(X)-collagen matrix. In vivo, mobilization of endogenous circulating progenitor cells was increased, and greater recruitment of these and systemically injected human peripheral blood CXCR4(+)L-selectin(+) cells to sLe(X)-collagen treated limbs was observed compared to collagen-only. This condition was associated with differences in angiogenic/chemotactic cytokine levels, with greater arteriole density and increased perfusion in sLe(X)-collagen treated hindlimbs. With these factors taken together, we demonstrated that an acellular matrix-bound ligand approach can enhance the mobilization, recruitment, and therapeutic effects of endogenous and/or transplanted progenitor cells, possibly through paracrine and antiapoptotic mechanisms, and could be used to improve cell-based regenerative therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.