A three-dimensional NbO-type metal–organic framework (MOF) and its thin film on α-Al2O3 and SiO2 show novel reversible guest-dependent thermochromic behaviors.
A ferroelectric MOF with a formula [Sr(μ-BDC)(DMF)]∞ (1) was transformed into [Sr(μ-BDC)(CH2Cl2)x]∞ (2) using a solvent exchange approach, where DMF = N,N-dimethylformamide and BDC(2-) = benzene-1,4-dicarboxylate. The lattice solvents, CH2Cl2 molecules, in 2 were removed by heating to give the solvent-free metal-organic framework [Sr(μ-BDC)]∞ (3) and the crystal-to-crystal transformation is reversible between 1 and 3. The release of DMF molecules from 1 results in the metal-organic framework of [Sr(μ-BDC)]∞ expanding a little along the a- and b-axes. The crystal structure optimizations for 1 and 3 disclosed that the lattice expansion is associated with the alternations of the bond distances and angles in the Sr(2+) ion coordination sphere along the a- and b-axes directions. The metal-organic framework 3 collapses at temperatures of more than 600 °C; such an extremely high thermal stability is related to the closed-shell electronic structure of the Sr(2+) ion, namely, the coordinate bond between the closed-shell Sr(2+) ion and the bridged BDC(2-) ligands does not have a preferred direction, which is favored for reducing lattice strains and is responsible for the higher thermal stability. The comparative investigations for the dielectric and ferroelectric behaviors of 1 and 3 confirmed that the motion of the polar DMF molecules, but not the [Sr(μ-BDC)]∞ framework, is responsible for the ferroelectric properties of 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.