In this work, performance improvements are described for a low-power consumption non-dispersive infrared (NDIR) methane (CH4) gas sensor using customised optical thin film bandpass filters (BPFs) centered at 3300 nm. BPFs shape the spectral characteristics of the combined mid-infrared III–V based light emitting diode (LED)/photodiode (PD) light source/detector optopair, enhancing the NDIR CH4 sensor performance. The BPFs, deposited using a novel microwave plasma-assisted pulsed DC sputter deposition process, provide room temperature deposition directly onto the temperature-sensitive PD heterostructure. BPFs comprise germanium (Ge) and niobium pentoxide (Nb2O5) alternating high and low refractive index layers, respectively. Two different optical filter designs are progressed with BPF bandwidths (BWs) of 160 and 300 nm. A comparison of the modelled and measured NDIR sensor performance is described, highlighting the maximised signal-to-noise ratio (SNR) and the minimised cross-talk performance benefits. The BPF spectral stability for various environmental temperature and humidity conditions is demonstrated.
In this work performance improvements are described of a low power consumption non-dispersive infrared (NDIR) methane (CH4) gas sensor using customised optical thin film bandpass filters (BPF). BPF’s shape the spectral characteristic of the combined mid infrared III-V based light emitting diode (LED)/ photodiode (PD) light source/detector optopair, enhancing NDIR CH4 sensor performance. The BPF, deposited using a novel microwave plasma assisted pulsed DC sputter deposition process, is deposited at room temperature directly onto the temperature sensitive PD heterostructure. BPF’s comprise germanium (Ge) and niobium pentoxide (Nb2O5) alternating high and low refractive index layers respectively. Two different optical filter designs are progressed; with BPF bandwidths (BWs) of 160 nm and 300 nm. Comparison of modelled and measured NDIR sensor performance is described, highlighting maximized signal to noise ratio (SNR) and minimized cross talk performance benefits. BPF spectral stability for various environmental temperature and humidity conditions is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.