SUMMARYMulti-sensory communications with haptics attract a number of researchers in recent years. To provide services of the communications with high realistic sensations, the researchers focus on the quality of service (QoS) control, which keeps as high quality as possible, and the quality of experience (QoE) assessment, which is carried out to investigate the influence on user perception and to verify the effectiveness of QoS control. In this paper, we report the present status of studies on multisensory communications with haptics. Then, we divide applications of the communications into applications in virtual environments and those in real environments, and we mainly describe collaborative work and competitive work in each of the virtual and real environments. We also explain QoS control which is applied to the applications and QoE assessment carried out in them. Furthermore, we discuss the future directions of studies on multi-sensory communications.
In this paper, we investigate the influences of network delay on QoE (Quality of Experience) such as the operability of haptic interface device and the fairness between players for soft objects in a networked real-time game subjectively and objectively. We handle a networked balloon bursting game in which two players burst balloons (i.e., soft objects) in a 3D virtual space by using haptic interface devices, and the players compete for the number of burst balloons. As a result, we find that the operability depends on the network delay from the local terminal to the other terminal, and the fairness is mainly dependent on the difference in network delay between the players' terminals. We confirm that there exists a trade-off relationship between the operability and the fairness. We also see that the contribution of the fairness is larger than that of the operability to the comprehensive quality (i.e., the weighted sum of the operability and fairness). Assessment results further show that the output timing of terminals should be adjusted to the terminal which has the latest output timing to maintain the fairness when the difference in network delay between the terminals is large. In this way, the comprehensive quality at each terminal can be maintained as high as possible.
In this paper, we deal with a remote robot system in which a user can operate an industrial robot with a force sensor at a remote location by using a haptic interface device. We apply a method using the wave filter together with the phase control filter which was previously proposed by the authors to the remote robot system for stabilization control. We also propose a method to enhance the haptic quality. By experiment, we demonstrate the effectiveness of the proposed method. We compare the proposed method with the conventional method quantitatively and clarify which domains the proposed method is applied to more effectively.
This paper proposes a group synchronization control scheme with prediction in work using haptic media. The scheme adjusts the output timing among multiple terminals and keeps the interactivity high. It outputs position information by predicting the future position later than the position included in the last-received information by a fixed amount of time. It also advances the output time of position information at each local terminal by the same amount of time. We deal with two different types of work using haptic media so as to demonstrate the effectiveness of the scheme. We assess the output quality of haptic media for the two types of work subjectively and objectively by Quality of Experience (QoE) assessment. We further clarify the relationship between subjective and objective assessment results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.