Ovothiol is a histidine thiol derivative. The biosynthesis of ovothiol involves an extremely efficient trans-sulfuration strategy. The nonheme iron enzyme OvoA catalyzed oxidative coupling between cysteine and histidine is one of the key steps. Besides catalyzing the oxidative coupling between cysteine and histidine, OvoA also catalyzes the oxidation of cysteine to cysteine sulfinic acid (cysteine dioxygenase activity). Thus far, very little mechanistic information is available for OvoA-catalysis. In this report, we measured the kinetic isotope effect (KIE) in OvoA-catalysis using the isotopically sensitive branching method. In addition, by replacing an active site tyrosine (Tyr417) with 2-amino-3-(4-hydroxy-3-(methylthio)phenyl)propanoic acid (MtTyr) through the amber suppressor mediated unnatural amino acid incorporation method, the two OvoA activities (oxidative coupling between cysteine and histidine, and cysteine dioxygenase activity) can be modulated. These results suggest that the two OvoA activities branch out from a common intermediate and that the active site tyrosine residue plays some key roles in controlling the partitioning between these two pathways.
As one of the most abundant elements on earth, sulfur is part of many small molecular metabolites and is key to their biological activities. Over the past few decades, some general strategies have been discovered for the incorporation of sulfur into natural products. In this review, we summarize recent efforts in elucidating the biosynthetic details for two sulfur-containing metabolites, ergothioneine and ovothiol. Their biosyntheses involve an unprecedented trans-sulfur strategy, a combination of a mononuclear non-heme iron enzyme-catalyzed oxidative C-S bond formation reaction and a PLP enzyme-mediated C-S lyase reaction.
FtmOx1 is a nonheme iron (NHFe) endoperoxidase, catalyzing three disparate reactions, endoperoxidation, alcohol dehydrogenation, and dealkylation, under in vitro conditions; the diversity complicates its mechanistic studies. In this study, we use two substrate analogues to simplify the FtmOx1-catalyzed reaction to either a dealkylation or an alcohol dehydrogenation reaction for structure–function relationship analysis to address two key FtmOx1 mechanistic questions: (1) Y224 flipping in the proposed COX-like model vs α-ketoglutarate (αKG) rotation proposed in the CarC-like mechanistic model and (2) the involvement of a Y224 radical (COX-like model) or a Y68 radical (CarC-like model) in FtmOx1-catalysis. When 13-oxo-fumitremorgin B ( 7 ) is used as the substrate, FtmOx1-catalysis changes from the endoperoxidation to a hydroxylation reaction and leads to dealkylation. In addition, consistent with the dealkylation side-reaction in the COX-like model prediction, the X-ray structure of the FtmOx1•Co II •αKG• 7 ternary complex reveals a flip of Y224 to an alternative conformation relative to the FtmOx1•Fe II •αKG binary complex. Verruculogen ( 2 ) was used as a second substrate analogue to study the alcohol dehydrogenation reaction to examine the involvement of the Y224 radical or Y68 radical in FtmOx1-catalysis, and again, the results from the verruculogen reaction are more consistent with the COX-like model.
Photocatalytic compounds and complexes, such as tris(bipyridine)ruthenium(II), [Ru(bpy)3]2+, have shown promise as light-mediated bactericides. However, transition metal-based complexes require relatively high concentrations (ppm level) to achieve reliable antibacterial effects. There is consequently a need for new approaches that provide improved efficacy and control of the antibacterial function of these complexes. In this work, we demonstrate strong, visible light-dependent bacterial inactivation with a nanocomposite design that incorporates [Ru(bpy)3]2+ as photocatalyst and a Ag nanoparticle (NP) core as light-concentrating nanoantenna into a plasmonic hybrid photoreactor. The hybrid photoreactor platform is facilitated by a self-assembled lipid membrane that encapsulates the Ag NP and binds the photocatalyst. The lipid membrane renders the nanocomposite biocompatible in the absence of resonant illumination. Upon illumination, the plasmon-enhanced photoexcitation of the metal-toligand-charge-transfer band of [Ru(bpy)3]2+ prepares the reactive excited state of the complex that oxidizes the nanocomposite membrane and increases its permeability. The photooxidation induces the release of [Ru(bpy)3]2+, Ag+, and peroxidized lipids into the ambient medium, where they interact synergistically to inactivate bacteria. We measured seven orders of magnitude decrease in Gram-positive Arthrobacter sp. and four orders of magnitude decrease in Gramnegative Escherichia coli (E. coli) colony forming units (CFUs) with the photoreactor bactericides after 1-hour of visible light illumination. In both cases the photoreactor exceeds the bactericidal standard of a log reduction value (LRV) of 3, and surpasses the antibacterial effect of free Ag NPs or [Ru(bpy)3]2+ by more than four orders of magnitude. We also implement the inactivation of a bacterial thin film in a proof-of-concept study.
Ovothiols are thiol-histidines that play important roles in protecting cells against oxidative stresses. Because of challenges faced in their chemical synthesis, biosynthesis provides an alternative option. In ovothiol biosynthesis, a nonheme iron enzyme (OvoA) catalyzes a fourelectron oxidative coupling between L-His and L-Cys. There are debates in the literature over whether oxidative C−S bond formation or sulfur oxidation is the first half of OvoA-catalysis. In this report, by incorporating a tyrosine analogue, 2-amino-3-(4-hydroxy-3-(methoxyl) phenyl) propanoic acid (MeOTyr), via an amber-suppressor method, we modulated the rate-limiting steps of OvoA-catalysis and observed an inverse deuterium KIE for [U-2 H 5 ]-His. In conjunction with the reported quantum mechanics/molecular mechanics (QM/MM) studies, our results suggest that Y417 plays redox roles in OvoA-catalysis and imply that oxidative C−S bond formation is most likely the first half of the OvoA-catalysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.