In this study, a hydrogen fuel jet-stabilized combustor is proposed, the combustion flow characteristics are numerically investigated under the conditions of three equivalence ratios (1, 0.37, and 0.22), and the effects of hydrogen flow rate assignment on the combustion flow are also analyzed. The results show that it is easier for the multijet scheme to form a full and stable vortex structure pair in the recirculation zone under lean conditions than the single-jet scheme, and it has a uniform reaction rate to form larger combustion zones, which makes it easier to achieve flame stabilization. The combustion efficiency of two fuel jet schemes is less than 65% when the equivalence ratio is 1, and complete combustion can be achieved under lean conditions; however, the outlet temperature distribution factor (OTDF) is basically the same. For the multijet scheme with an equivalence ratio of 0.22, as the flow rate assigned to the central jet decreases, a stable and full vortex pair is formed in the recirculation zone, and a high-temperature region can be formed under each working condition, but its area decreases with the central jet flow rate. The combustion efficiency in the recirculation zone increases first and then decreases as the central jet flow decreases, and the OTDF decreases with it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.