Some landscape characters put great influences on the aesthetic preferences of a river. Finding out these characters will provide for river landscape design and management with explicit keystones. In this paper, 23 sample areas of rivers were selected in Xuzhou, China, and 15 landscape characters of rivers were identified. The photos taken at the sample areas were as stimuli, and undergraduate students were respondents. The results demonstrate that the aesthetic preferences of photos judged one-by-one and judged together receive similar results; the preference scores of deflective views are significantly higher than the ones of opposite views; for urban rivers, "river accessibility" and "number of colours" are reliably positive predictors to aesthetic preferences, "wood diversity index" and "plants on water" are negative ones; for rural rivers, "coverage of riparian vegetation", "perspective" and "wood diversity index" are reliably positive predictors to aesthetic preferences.
A healthy ecosystem provides various ecological services for human beings and it is the foundation for the sustainable development of human society. However, human activities and natural disasters inevitably interfere with the evolution of an ecosystem at different scales [1-2]. Ecological risk refers to the possibility that the ecosystem structure and function will be degenerated under external pressure [3]. Ecological risk assessment (ERA) is an effective method for quantifying
There is a lot of research on the urban thermal environment, mainly on air temperature. However, fewer studies focus on soil temperature that is influenced by built environment, especially on the horizontal heat impacts from buildings. In this research, soil temperature was investigated at different depths in Beijing, China, to compare the differences between two locations. One was next to the building and the other was far away from the building (10 m). The locations are referred to as site A and site B, respectively. These two sites were chosen to compare the differences in soil temperatures between them to present the horizontal heat impact from facade. The results show that facades caused horizontal heat impacts on the soil at different depths in the winter, spring, and summer. Basically, facades functioned as heat sources to the soil surrounding them. The mean temperature differences between the two sites were 3.282, 4.698 and 0.316 K in the winter, spring and summer, respectively. Additionally, the thermal effects of the buildings were not only exhibited as higher soil temperatures but the temporal appearance of the maximum and minimum temperature was also influenced. Buildings functioned as heat sources to heat soil in the winter and spring and stabilized soil temperature so that it would not fluctuate too much in the summer. Additionally, the coefficient of variation indicates that buildings primarily increased the soil temperature in the winter and spring and stabilized the soil temperature in the summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.