Acitretin therapy for children with PP (monotherapy or combination therapy), all showed a satisfactory therapeutic effect and safety, independent of the short or long-tern therapeutic procedures.
The roles of IL-22 in the pathomechanisms of psoriasis have been well demonstrated. Gap junctional intercellular communication (GJIC) is widely known for its involvement in multiple biological and pathological processes such as growth-related events, cell differentiation, and inflammation. Here, we show that IL-22 significantly decreased GJIC and down-regulated Cx43 expression in HaCaT cells. Cx43 overexpression markedly inhibited the proliferation of and increased GJIC in HaCaT cells, but the silencing of Cx43 exerted the opposite effects. Additionally, Cx43 overexpression effectively rescued the IL-22-induced decrease in GJIC in HaCaT cells. The IL-22-induced down-regulation of Cx43 expression and decrease in GJIC can be significantly blocked by the JNK inhibitor SP600125 and by the overexpression of IL-22RA2 (which specifically binds to IL-22 and inhibits its activity), but not by the NF-κB inhibitor BAY11-7082, in HaCaT cells. Furthermore, the IL-22-induced down-regulation of Cx43 expression mediated by the JNK signaling pathway was confirmed in a mouse model of IL-22-induced psoriasis-like dermatitis. Similarly, Cx43 expression was significantly lower in the lesional skin than in the nonlesional skin of patients with psoriasis. These results suggest that IL-22 decreases GJIC by activating the JNK signaling pathway, which down-regulates Cx43 expression; this process is a possible pathomechanism of keratinocyte hyperproliferation in psoriasis.
Background
Erythrokeratodermia variabilis et progressiva (EKVP, OMIM 133200) is a rare hereditary disorder characterized by varies from transient, fast moving erythema to persistent brown hyperkeratotic plaques. Recently, mutations in the genes gap junction alpha 1 gene (GJA1), GJB3, and GJB4 have been reported to cause EKVP. Here, we report the identification of two de novo missense mutations in the GJA1 gene in two unrelated individuals with EKVP.
Methods
The patients and his family members were subjected to mutation detection in the candidate gene GJA1, GJB3, and GJB4 by Sanger sequencing. The expression of connexin (Cx) 43 was detected by immunohistochemistry and immunofluorescence (IF) studies in the lesions.
Results
A 12‐year‐old boy presented with multiple hyperkeratotic plaques on the face, neck, elbows, wrists, limbs, knees, inguinal region, hands, and feet. A 7‐year‐old girl presented with symmetrical erythematous, plaques on the hands, feet, wrists, and ankles. A novel heterozygous missense mutation c.848C > T (p.P283L) in exon 2 of the GJA1 gene was identified in both patients. A novel heterozygous missense mutation c.869C > A (p.T290N) in exon 2 of the GJA1 gene was also identified in the boy. These mutations were not found in the unaffected family members and 100 normal controls. In the patients’ lesions, Cx43 protein was located to the cytomembrane and cytoplasm in the stratum corneum, and granular layer. Compound heterozygous mutations in the boy showed a more severe clinical phenotype and cytoplasmic mislocalization.
Conclusions
The novel mutations c.848C > T (p.P283L) and c.869C > A(p.T290N) arose de novo and were considered as the cause of two Chinese EKVP. GJA1 P283L and T290N mutations lead to Cx43 protein cytoplasmic mislocalization. Our finding expands the mutant spectrum of GJA1 gene and adds new understanding of the genotype‐phenotype correlation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.