We propose multi-party quantum summation protocols based on single particles, in which participants are allowed to compute the summation of their inputs without the help of a trusted third party and preserve the privacy of their inputs. Only one participant who generates the source particles needs to perform unitary operations and only single particles are needed in the beginning of the protocols.
Identifying the influential nodes in complex networks is a challenging and significant research topic. Though various centrality measures of complex networks have been developed for addressing the problem, they all have some disadvantages and limitations. To make use of the advantages of different centrality measures, one can regard influential node identification as a multi-attribute decision-making problem. In this paper, a dynamic weighted Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is developed. The key idea is to assign the appropriate weight to each attribute dynamically, based on the grey relational analysis method and the Susceptible–Infected–Recovered (SIR) model. The effectiveness of the proposed method is demonstrated by applications to three actual networks, which indicates that our method has better performance than single indicator methods and the original weighted TOPSIS method.
Community detection can not only help people understand organizational structure and function of complex networks, but also attributes to many potential applications including targeted advertising and customer relationship management. Due to the low time complexity, the label propagation algorithm is widely used, but there is still room to improve the community quality and the detection stability. Inspired by resource allocation and local path similarity, we first give a new two-level neighbourhood similarity measure called TNS, and on this basis we propose an improved label propagation algorithm for community detection. In this new algorithm, the minimum distance and local centrality index are considered to select the initial community centers, to ensure that they are both important and far away from each other. In the process of forming initial community, we employ the new similarity measure and an optimization strategy of asynchronously updating labels according to node importance. To further improve the accuracy of community division, we introduce the label influence based on the new similarity measure to further optimize the community division of networks. The experimental results on both the artificial network and ten real-world networks show that our proposed algorithm has better comprehensive performance than several existing algorithms in terms of modularity, normalized mutual information and adjusted rand index.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.