Film video noise can usually be defined as the error information visible on the video image, caused by the digital signal system. This distortion is inevitably present in the video obtained by various camera equipment. Noise reduction techniques are important preprocessing processes in many video processing applications, and its main goal is to reduce the noise contained in a video image while preserving as much of its edge and texture information as possible. In this paper, we describe in detail the principles of the space-time noise reduction filter, propose a 3D-filter algorithm for Gaussian noise, an improved 3D-filter algorithm based on the 3D-BDP (bloom-deep-split) filter for mixed noise, and a filter algorithm for luminance and color noise in low-brightness scenes. By dissecting the partial differential equation (PDE) denoising process, we establish a new iterative denoising algorithm. The partial differential equation method can be considered as the iterative denoising of the filter, and the first stage of the new algorithm uses wavelet-domain adaptive Wiener filter as the filtering base and achieves good results by adjusting the parameters. The proposed model in this paper is compared with the existing denoising model, and the analysis results show that the model proposed in this section can effectively remove multiplicative noise. The experimental report shows that the parameters set by the algorithm have some stability and can achieve good processing results for multiple images, which is an advantage over the partial differential equation method for denoising. The second stage of the algorithm uses the appropriate partial differential equation method to remove the pseudo-Gibbs in the first stage, which further improves the performance of the algorithm. After the image containing Gaussian noise is processed by the new algorithm, the pseudo-Gibbs effect, which often occurs in wavelet denoising, is eliminated, and the step effect, which occurs in partial differential equation denoising, is avoided; the details are better preserved, and the peak signal-to-noise ratio is improved, and a large number of experiments show that it is an effective denoising method.
With the support of big data technology, the field of education is also facing new problems and opportunities. Network teaching has become the mainstream means of higher education. In order to explore the changes of students’ learning effect in the process of online teaching, this paper proposes to build an online teaching effect evaluation model with the support of data mining technology and decision tree algorithm. This paper records the factors and objects that reflect the teaching effect in network teaching and traditional teaching, respectively. A decision tree algorithm is used to divide the attributes of influencing factors from relevant rules. Using the Kirschner model to build the evaluation system, add two attribute elements: students’ teaching evaluation and teachers’ self-evaluation. Data mining technology is used to preprocess and clean up the sample set, which improves the accuracy of the calculation results. In the evaluation model, the association rule algorithm is also constructed to classify the data of the same element type and delete the data of different elements after marking. Through this evaluation model, teachers can accurately judge students’ learning interests and improve students’ academic performance. The results show that compared with the traditional data mining algorithm, the decision tree algorithm has obvious advantages in computing speed and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.