This study further evaluated the in vitro and in vivo anti-Helicobacter pylori activities and potential underlying mechanism of patchouli alcohol (PA), a tricyclic sesquiterpene. In the in vitro assay, the capacities of PA to inhibit and kill H. pylori were tested on three standard strains at different pH values and on 12 clinical isolates. The effects of PA on H. pylori adhesion (and its alpA, alpB, and babA genes), motility (and its flaA and flaB genes), ultrastructure, and flagellation were investigated. Moreover, the H. pylori resistance to and postantibiotic effect (PAE) of PA were determined. Furthermore, the in vivo effects of PA on H. pylori eradication and gastritis were examined. Results showed that MICs of PA against three standard strains (pH 5.3 to 9) and 12 clinical isolates were 25 to 75 and 12.5 to 50 g/ml, respectively. The killing kinetics of PA were time and concentration dependent, and its minimal bactericidal concentrations (MBCs) were 25 to 75 g/ml. In addition, H. pylori adhesion, motility, ultrastructure, and flagellation were significantly suppressed. PA also remarkably inhibited the expression of adhesion genes (alpA and alpB) and motility genes (flaA and flaB). Furthermore, PA treatment caused a longer PAE and less bacterial resistance than clarithromycin and metronidazole. The in vivo study showed that PA can effectively eradicate H. pylori, inhibit gastritis, and suppress the expression of inflammatory mediators (COX-2, interleukin 1, tumor necrosis factor alpha, and inducible nitric oxide synthase [iNOS]). In conclusion, PA can efficiently kill H. pylori, interfere with its infection process, and attenuate gastritis with less bacterial resistance, making it a potential candidate for new drug development.
Suo Quan Wan (SQW) has been used to treat lower urinary tract symptoms (LUTS) in elderly patients for hundreds of years in China. β-adrenoceptors (β-ARs), particularly β3-adrenoceptor (β3-AR), was reported to be important in the bladder dysfunction of the elderly. The present study was conducted to explore the effect of β-AR, and particularly the β3-adrenoceptor, in aging rat bladder function in vitro and to test the therapeutic effect of SQW on LUTS in an aging rat model based on the β3-adrenoceptor. Briefly, the bladder detrusor muscles of young (age, 3 months) and aging (age, 15 months) female rats were separated. A β-AR non-selective agonist, isoprenaline (ISO), subtype β3-AR agonist (BRL37344A) and β3-AR antagonist (SR59230A) were used to define the tension change of detrusor muscles between young and aging rats in vitro. For blank controls, 12 young rats were marked, and 48 aging female rats were randomly divided into four groups as follows: Model, SQW high, SQW middle and SQW low. Following oral administration of SQW for 6 weeks in aging rats, urodynamic and bladder detrusor tests were used to evaluate the therapeutic effect of SQW. The expression of β3-AR mRNA was investigated using reverse transcription-quantitative polymerase chain reaction. Using ISO and BRL37344A in vitro, maximum relaxation (Emax), intrinsic activity (IA), and log (50% effective concentration) (PD2) were significantly decreased in aging rats compared with that in young rats (P<0.05). Significant changes were also observed in the β3-AR antagonist experiment, which blocked ISO-induced relaxation, with significant decreases observed in Emax, IA and PD2, and a significant increase observed in PA2 for the aging rats compared with the young controls (P<0.05). SQW was demonstrated to enhance bladder control, storage and contraction ability. Furthermore, SQW was able to increase the sensitivity and expression of β3-AR in an aging rat. In conclusion, the decrease in β3-AR sensitivity in aging rats and the expression resulted in bladder detrusor dysfunction. In addition, the therapeutic effect of SQW against LUTS relies on the former's effect on the urethral sphincter, bladder detrusor and β3-AR.
BackgroundThis study aimed to elucidate the effects and mechanisms of Radix Linderae (RL) extracts on a mouse model of diabetic bladder dysfunction (DBD), especially on later decompensated phase.MethodsMale C57BL/6J mice were intraperitoneally injected with streptozotocin (STZ) after 4 weeks of high-fat diet (HFD) feeding. DBD mouse models (later decompensated phase) were developed by 12-weeks persistent hyperglycemia and then treated with RL extracts for 4 weeks. During administration, the fasting blood glucose (FBG) test was performed once a week. Four weeks later, oral glucose tolerance test (OGTT), voided stain on paper (VSOP), and urodynamic alteration were explored. We also performed haematoxylin and eosin (H&E) and Masson’s trichrome staining to observe the histology of the bladder. Then, the contractile responses to α, β-methylene ATP, capsaicin (CAP), KCl and carbachol were measured. Moreover, qPCR assay was performed to analyse the bladder gene expression levels of M3 receptors and TRPV1.ResultsThe diabetic mice exhibited higher FBG, OGTT and urine production, and no substantial alteration was observed after RL treatment. Urodynamic test showed the maximum bladder capacity (MBC), residual volume (RV) and bladder compliance (BC), as well as the decrement of voided efficiency (VE) and micturition volume (MV), remarkably increased in the DBD mice. Furthermore, RL treatment significant improved urodynamic urination, with lower MBC, RV, and, BC, as well as higher VE and MV, as compared with the model groups. The wall thickness of the bladder and the ratio of smooth muscle/collagen remarkably increased, and RL could effectively attenuate the pathological change. The response of bladder strips to the stimulus was also reduced in the DBD mice, and RL treatment markedly increased the contraction. Furthermore, the gene expression levels of M3 receptors and TRPV1 were down-regulated in the bladders of the diabetic mice, whereas RL treatment retrieved those gene expression levels.ConclusionsRL extracts can improve the bladder voiding functions of the DBD model mice in later decompensated phase, and underlying mechanisms was associated with mediating the gene expression of M3 receptors and TRPV1 in the bladder instead of improving blood sugar levels.Electronic supplementary materialThe online version of this article (10.1186/s12906-019-2448-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.