A two-dimensional graphene plasmonic crystal composed of periodically arranged graphene nanodisks is proposed. We show that the band topology effect due to inversion symmetry broken in the proposed plasmonic crystals is obtained by tuning the chemical potential of graphene nanodisks. Utilizing this kind of plasmonic crystal, we constructed N-shaped channels and realized topologically edged transmission within the band gap. Furthermore, topologically protected exterior boundary propagation, which is immune to backscattering, was also achieved by modifying the chemical potential of graphene nanodisks. The proposed graphene plasmonic crystals with ultracompact size are subject only to intrinsic material loss, which may find potential applications in the fields of topological plasmonics and high density nanophotonic integrated systems.
In this article, the lineshape of Fano-like resonance of graphene plasmonic oligomers is investigated as a function of the parameters of the nanostructures, such as disk size, chemical potential and electron momentum relaxation time in mid-infrared frequencies. Also, the mechanism of the optimization is discussed. Furthermore, the environmental index sensing effect of the proposed structure is revealed, and a figure of merit of 25.58 is achieved with the optimized graphene oligomer. The proposed nanostructure could find applications in the fields of chemical or biochemical sensing.
In this paper, we propose a plasmonic tetramer composed of coupled graphene nanodisks. The transformation from the isolated to the collective modes of the proposed structure is investigated by analysing the whispering-gallery modes and extinction spectra with various inter-nanodisk gap distances. In addition, the effect of introducing a central nanodisk into the tetramer on the extinction spectra is explored, which leads to Fano resonance. Furthermore, the refractive index sensing properties of the proposed graphene plasmonic oligomer have been demonstrated. The proposed nanostructures might pave the road toward the application of graphene plasmonic oligomers in fields such as nanophotonics, and chemical or biochemical sensing.
A new degree of freedom, valley, has recently been introduced into the fields of acoustic and photonic crystals. This provides a promising platform for classical waves to mimic the valleycontrasting properties of condensed matter physics. Here, we study the plasmonic version of valley states in graphene plasmonic crystals of inversion symmetry broken honeycomb lattices. The intrinsic valley vortex feature is unambiguously revealed. The evolution of the valley chiral states involving topological transition is theoretically explored. Furthermore, numerical simulations for the selective excitations of the valley chiral states are carried out in our designed valley plasmonic crystals. Our work has potential applications in the orbital angular momentum-assisted surface plasmon polariton manipulation and the applications of plasmonic valleytronics in nanophotonics and on-chip integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.