China experienced severe haze pollution in January 2013. Here we have a detailed characterization of the sources and evolution mechanisms of this haze pollution with a focus on four haze episodes that occurred during 10-14 January in Beijing. The main source of data analyzed is from submicron aerosol measurements by an Aerodyne Aerosol Chemical Speciation Monitor. The average PM1 mass concentration during the four haze episodes ranged from 144 to 300 μg m
À3, which was more than 10 times higher than that observed during clean periods. All submicron aerosol species showed substantial increases during haze episodes with sulfate being the largest. Secondary inorganic species played enhanced roles in the haze formation as suggested by their elevated contributions during haze episodes. Positive matrix factorization analysis resolved six organic aerosol (OA) factors including three primary OA (POA) factors from traffic, cooking, and coal combustion emissions, respectively, and three secondary OA (SOA) factors. Overall, SOA contributed 41-59% of OA with the rest being POA. Coal combustion OA (CCOA) was the largest primary source, on average accounting for 20-32% of OA, and showed the most significant enhancement during haze episodes. A regional SOA (RSOA) was resolved for the first time which showed a pronounced peak only during the record-breaking haze episode (Ep3) on 12-13 January. The regional contributions estimated based on the steep evolution of air pollutants were found to play dominant roles for the formation of Ep3, on average accounting for 66% of PM1 during the peak of Ep3 with sulfate, CCOA, and RSOA being the largest fractions (>~75%). Our results suggest that stagnant meteorological conditions, coal combustion, secondary production, and regional transport are four main factors driving the formation and evolution of haze pollution in Beijing during wintertime.
COVID-19 pandemic continues worldwide with many variants arising, especially those of variants of concern (VOCs). A recent VOC, Omicron (B.1.1.529), which obtains a large number of mutations in the receptor-binding domain (RBD) of the spike protein, has risen to intense scientific and public attention. Here we studied the binding properties between the human receptor ACE2 (hACE2) and the VOC RBDs and resolved the crystal and cryo- EM structures of the Omicron RBD-hACE2 complex, as well as the crystal structure of Delta RBD-hACE2 complex. We found that, unlike Alpha, Beta and Gamma, Omicron RBD binds to hACE2 at a similar affinity compared to that of the prototype RBD, which might be due to compensation of multiple mutations for both immune escape and transmissibility. The complex structures of Omicron-hACE2 and Delta-hACE2 reveal the structural basis of how RBD-specific mutations bind to hACE2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.