Our objective is to study the relationship between the regulatory proteins Bcl-2/Bax and mitochondria-mediated apoptosis during the differentiation of adipose-derived stromal cells (ADSCs) into neurons. Immunocytochemistry and western blotting showed that the cells weakly expressed neuron-specific enolase (NSE) in the non-induced group and expressed NSE more strongly in the groups induced for 1 h, 3 h, 5 h and 8 h. NSE expression peaked at 5 h (P < 0.05), although there was no significant difference between 5 and 8 h (P > 0.05). Bcl-2 expression gradually decreased over time in the non-induced group (P < 0.05). However, Bax, caspase-9, Cyt-c and caspase-3 expression gradually increased and peaked at 8 h (P < 0.05). Transmission electron microscopy revealed karyopyknosis, chromatin edge setting, mitochondria swelling and cavitation in cells at 5 h, and the mitochondrial membrane potential decreased over time, as demonstrated by laser scanning confocal microscopy. After a 5 h induction, cells differentiated into typical neurons and expressed Bcl-2, which inhibited apoptosis. Bax showed a strong apoptosis-promoting capacity, leading to changes in the mitochondrial membrane potential and structure, and then triggered the caspase-independent apoptotic response through the mitochondrial pathway. At the same time, Cyt-c was directly or indirectly released from the mitochondria to the cytoplasm to trigger the caspase-dependent apoptotic response through the mitochondrial pathway. Therefore, Bcl-2/Bax play an important role in regulating caspase-dependent and caspase-independent apoptosis mediated by the mitochondrial pathway during the differentiation of ADSCs into neurons.
Background and objective Single‐study evidence of separate and combined effectiveness of influenza and pneumococcal vaccination in patients with chronic obstructive pulmonary disease (COPD) is limited. To fill this gap, we studied the effectiveness of trivalent seasonal influenza vaccine (TIV) and 23‐valent pneumococcal polysaccharide vaccine (PPSV23), separately and together, at preventing adverse COPD outcomes. Methods Our study used a self‐controlled, before‐and‐after cohort design to assess the effectiveness of TIV and PPSV23 in COPD patients. Patients were recruited from hospitals in Tangshan City, Hebei Province, China. Subjects self‐selected into one of the three vaccination schedules: TIV group, PPSV23 group and TIV&PPSV23 group. We used a physician‐completed, medical record‐verified questionnaire to obtain data on acute exacerbations of COPD (AECOPD), pneumonia and related hospitalization. Vaccine effectiveness was determined by comparing COPD outcomes before and after vaccination, controlling for potential confounding using Cox regression. Results We recruited 474 COPD patients, of whom 109 received TIV, 69 received PPSV23 and 296 received TIV and PPSV23. Overall effectiveness for preventing AECOPD, pneumonia and related hospitalization were respectively 70%, 59% and 58% in the TIV group; 54%, 53% and 46% in the PPSV23 group; and 72%, 73% and 69% in the TIV&PPSV23 group. The vaccine effectiveness without COVID‐19 non‐pharmaceutical intervention period were 84%, 77% and 88% in the TIV group; 63%, 74% and 66% in the PPSV23 group; and 82%, 83% and 91% in the TIV&PPSV23 group. Conclusion Influenza vaccination and PPSV23 vaccination, separately and together, can effectively reduce the risk of AECOPD, pneumonia and related hospitalization. Effectiveness for preventing AECOPD was the greatest.
Cognitive function represents a complex neurophysiological capacity of the human brain, encompassing a higher level of neural processing and integration. It is widely acknowledged that the cerebrum plays a commanding role in the regulation of cognitive functions. However, the specific role of the cerebellum in cognitive processes has become a subject of considerable scholarly intrigue. In 1998, Schmahmann first proposed the concept of “cognitive affective syndrome (CCAS),” linking cerebellar damage to cognitive and emotional impairments. Since then, a substantial body of literature has emerged, exploring the role of the cerebellum in cognitive neurological function. The cerebellum’s adjacency to the cerebral cortex, brainstem, and spinal cord suggests that the cerebral-cerebellar network loops play a crucial role in the cerebellum’s participation in cognitive neurological functions. In this review, we comprehensively examine the recent literature on the involvement of the cerebellum in cognitive functions from three perspectives: the cytological basis of the cerebellum and its anatomical functions, the cerebellum and cognitive functions, and Crossed cerebellar diaschisis. Our aim is to shed light on the role and mechanisms of the cerebellum in cognitive neurobrain networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.