Single‐atomic‐site (SAS) catalysts, a new frontier of catalysts, always show extremely high atom efficiency and unexpected catalytic properties. Herein, a pyrolyzing coordinated polymer (PCP) strategy is developed, which is facile and widely applicable in the synthesis of a series of SAS catalysts including SAS‐Fe, SAS‐Ni, SAS‐Cu, SAS‐Zn, SAS‐Ru, SAS‐Rh, SAS‐Pd, SAS‐Pt, and SAS‐Ir. The as‐obtained SAS catalysts can be easily synthesized at gram scale and the metal loading of SAS‐Fe catalysts achieves a record value of 30 wt%, which meets the requirement of practical applications. Moreover, it is discovered that SAS‐Fe catalysts show unprecedented catalytic performance for epoxidation of styrene using O2 as the only oxidant (yield: 64%; selectivity: 89%), while Fe nanoparticles and ironporphyrin are inactive. This discovery is believed to pave the way for exploiting the unparalleled properties of SAS catalysts and promoting their industrial applications.
Kinetic control of surface defects is achieved, and cubic, concave cubic, and defect-rich cubic intermetallic Pt3 Sn nanocrystals are prepared for the electro-oxidation of formic acid. The generality of this kinetic approach is demonstrated by the fabrication of Pt-Mn nanocrystals with different surface defects. The defect-rich nanocrystals exhibit high catalytic activity and stability concurrently, indicating their potential application in fuel cells.
The active species in supported metal catalysts are elusive to identify, and large quantities of inert species can cause significant waste. Herein, using a stoichiometrically precise synthetic method, we prepare atomically dispersed palladium-cerium oxide (Pd /CeO ) and hexapalladium cluster-cerium oxide (Pd /CeO ), as confirmed by spherical-aberration-corrected transmission electron microscopy and X-ray absorption fine structure spectroscopy. For aerobic alcohol oxidation, Pd /CeO shows extremely high catalytic activity with a TOF of 6739 h and satisfactory selectivity (almost 100 % for benzaldehyde), while Pd /CeO is inactive, indicating that the true active species are single Pd atoms. Theoretical simulations reveal that the bulkier Pd clusters hinder the interactions between hydroxy groups and the CeO surface, thus suppressing synergy of Pd-Ce perimeter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.