In order to understand the water-flooding characteristics of different fracture systems in metamorphic rock buried hill reservoirs and the mechanism of improving water-flooding development effect, a three-dimensional physical model of fractured reservoirs is established according to the similarity criterion based on the prototype of metamorphic buried hill reservoirs in JZ Oilfield in Bohai Bay Basin. Combined with the fractured reservoir characteristics of JZ Oilfield, the water displacement characteristics of the top-bottom staggered injection-production well pattern in different fracture network mode and different fracture development degree of buried hill reservoir are studied. The experimental results show that: 1) the more serious the fracture system irregularity is, the shorter the water-free oil production period is and the lower the water-free oil recovery is. After water breakthrough of production wells, the water cut rises faster, and the effect of water flooding development is worse; 2) under the condition of non-uniform fracture development, the development effect of the bottom fracture undeveloped is better than that of the middle fracture undeveloped. Water injection wells are deployed in areas with relatively few fractures, while oil wells are deployed in fractured areas with higher oil recovery and better development effect.
The bottom-hole pressure response which can reflect the gas flow characteristics is important to study. A mathematical model for description of gas from porous coalbed methane (CBM) reservoirs with complex boundary conditions flowing into horizontal wells has been developed. Meanwhile, basic solution of boundary elements has been acquired by combination of Lord Kelvin point source solution, the integral of Bessel function, and Poisson superimpose formula for CBM horizontal wells with complex boundary conditions. Using this model, type curves of dimensionless pressure and pressure derivative are obtained, and flow characteristics of horizontal wells in complex boundary reservoirs and relevant factors are accordingly analyzed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.