This paper presents an L-shaped sparsely-distributed vector sensor (SD-VS) array with four different antenna compositions. With the proposed SD-VS array, a novel two-dimensional (2-D) direction of arrival (DOA) and polarization estimation method is proposed to handle the scenario where uncorrelated and coherent sources coexist. The uncorrelated and coherent sources are separated based on the moduli of the eigenvalues. For the uncorrelated sources, coarse estimates are acquired by extracting the DOA information embedded in the steering vectors from estimated array response matrix of the uncorrelated sources, and they serve as coarse references to disambiguate fine estimates with cyclical ambiguity obtained from the spatial phase factors. For the coherent sources, four Hankel matrices are constructed, with which the coherent sources are resolved in a similar way as for the uncorrelated sources. The proposed SD-VS array requires only two collocated antennas for each vector sensor, thus the mutual coupling effects across the collocated antennas are reduced greatly. Moreover, the inter-sensor spacings are allowed beyond a half-wavelength, which results in an extended array aperture. Simulation results demonstrate the effectiveness and favorable performance of the proposed method.
Direction of arrival (DOA) estimation algorithms based on sparse Bayesian inference (SBI) can effectively estimate coherent sources without recurring to extra decorrelation techniques, and their estimation performance is highly dependent on the selection of sparse prior. Specifically, the specified sparse prior is expected to concentrate its mass on the zero and distribute with heavy tails; otherwise, these algorithms may suffer from performance degradation. In this paper, we introduce a new sparse-encouraging prior, referred to as "Gauss-Exp-Chi 2 " prior, and develop an efficient DOA estimation algorithm for a mixture of uncorrelated and coherent sources under a hierarchical SBI framework. The Gauss-Exp-Chi 2 prior distribution exhibits a sharp peak at the origin and heavy tails, and this property makes it an appropriate prior to encourage sparse solutions. A three-layer hierarchical sparse Bayesian model is established. Then, by exploiting variational Bayesian approximation, the model parameters are estimated by alternately updating until Kullback-Leibler (KL) divergence between the true posterior and the variational approximation becomes zero. By constructing the source power spectra with the estimated model parameters, the number and locations of the highest peaks are extracted to obtain source number and DOA estimates. In addition, some implementation details for algorithm optimization are discussed and the Cramér-Rao bound (CRB) of DOA estimation is derived. Simulation results demonstrate the effectiveness and favorable performance of the proposed algorithm as compared with the state-of-the-art sparse Bayesian algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.