Let R be a commutative ring with nonzero identity and k≥2 be a fixed integer. The k-zero-divisor hypergraph Hk(R) of R consists of the vertex set Z(R,k), the set of all k-zero-divisors of R, and the hyperedges of the form {a1,a2,a3,⋯,ak}, where a1,a2,a3,⋯,ak are k distinct elements in Z(R,k), which means (i) a1a2a3⋯ak=0 and (ii) the products of all elements of any (k−1) subsets of {a1,a2,a3,⋯,ak} are nonzero. This paper provides two commutative rings so that one of them induces a family of complete k-zero-divisor hypergraphs, while another induces a family of k-partite σ-zero-divisor hypergraphs, which illustrates unbalanced or asymmetric structure. Moreover, the diameter and the minimum length of all cycles or girth of the family of k-partite σ-zero-divisor hypergraphs are determined. In addition to a k-zero-divisor hypergraph, we provide the definition of an ideal-based k-zero-divisor hypergraph and some basic results on these hypergraphs concerning a complete k-partite k-uniform hypergraph, a complete k-uniform hypergraph, and a clique.
Cops and robbers game is a game usually played on a finite connected graphwith two players, cop and robber. Recently, cops and robbers game played on hypergraphs was introduced. To give a better chance to a cop by allowing morethan one cop and at least one cop has to move, the cop-number, the least numberof cops to guarantee that they win the game, on graphs and hypergraphs is studied.This thesis provides (i) a characterization of a cop-win hypergraph (ii) some results on the products of hypergraphs and (iii) the cop-number of complete k-partite hypergraphs and n-prisms over a hypergraph. Moreover, the cop-number of a special class of graphs is determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.