A series of chroman derivatives was designed, prepared, and examined for their anti-breast cancer and antiepileptic activities. All synthesized compounds yielded results that were in good agreement with spectral data. The bioassay showed that some of the resultant compounds exerted remarkable inhibitory effects on growth of human breast cancer cell line MCF-7. In particular, compound 6i (the concentration required for 50% inhibition of cell growth [GI50] =34.7 µM) exerted promising anticancer activity toward MCF-7 cell line. Additionally, compounds 6b, 6c, 6d, 6e, 6g, 6i, and 6l showed advanced antiepileptic activity than reference drugs. None of the compounds showed neurotoxicity, as determined by the rotarod test. The obtained results proved that these distinctive compounds could be relevant as models for future discovery and research, as well as for the production of more number of active derivatives.
The objective of the study was to develop a transdermal nanoformulation of hesperidin (HSP) against Proteus vulgaris (P. vulgaris). Based on the low water solubility of HSP, we prepared HSP-enabled AuNPs stabilized with xanthan gum (XA), referred to as HSP@XA@AuNPs. The HSP@XA@AuNP formulation was evaluated for particle size (43.16 nm), PDI (0.565), zeta potential (−31.9 mV), and entrapment efficiency (56.7%). The HSP@XA@AuNPs gel was developed by incorporating selected formulation grades into a 1% Carbopol gel base and characterized by physical evaluation and rheological studies. The color of the HSP@XA@AuNP gel was light pink, and the texture was very smooth and non-greasy. The gel was shown to be odorless. A field emission scanning electron microscope (FESEM) was used to investigate the shape of HSP@XA@AuNPs further. The drug release was 73.08% for the HSP@XA@AuNPs and 86.26% for the HSP@XA@AuNPs gel in 500 min. The prepared gel showed antimicrobial activity against P. vulgaris with an MIC of 1.78 μg/mL. In conclusion, the HSP@XA@AuNPs gel could be an advanced modality for treating P. vulgaris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.