Regression is a kind of data analysis technique in which the relationship between the independent variable(x) and dependent variable(y) is modeled and for polynomial regression it is up to the nth degree polynomial. Polynomial regression fits a nonlinear relationship between the value of x and the corresponding conditional mean of y, denoted by E (y|x). In this paper polynomial regression analysis has been improved through efficient selection of variables that is coefficient of determination. Coefficient of determination is a square of the correlation between new predicted y values and actual y values and its values are in the range from 0 to 1. The main purpose of regression analysis is to discover the relationship among the independent and dependent variables or in other words it is an explanation of variation in one variable with another variable. In this paper, the main focus is on Multivariate data sets that have many attributes and it is not necessary that all variables are required for data analysis purposes. Using coefficient of determination (COD) irrelevant attributes get eliminated during analysis. The main objective of research is to reduce the cost of data maintenance, reduce the execution time and improve the prediction accuracy rate. COD helps in selecting suitable independent variables. It is a notch that is used in statistical analysis that assesses how well a model explains and forecasts upcoming outcomes. This method also helps in eliminating the irrelevant variables which are not required for the prediction model by this maintenance cost and size of data sets can be reduced.
Regression analysis is a statistical technique that is most commonly used for forecasting. Data sets are becoming very large due to continuous transactions in today's high-paced world. The data is difficult to manage and interpret. All the independent variables can’t be considered for the prediction because it costs high for maintenance of the data set. A novel algorithm for prediction has been implemented in this paper. Its emphasis is on extraction of efficient independent variables from various variables of the data set. The selection of variables is based on Mean Square Errors (MSE) as well as on the coefficient of determination r2p, after that the final prediction equation for the algorithm is framed on the basis of deviation of actual mean. This is a statistical based prediction algorithm which is used to evaluate the prediction based on four parameters: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE) and residuals. This algorithm has been implemented for a multivariate data set with low maintenance costs, preprocessing costs, lower root mean square error and residuals. For one dimensional, two-dimensional, frequent stream data, time series data and continuous data, the proposed prediction algorithm can also be used. The impact of this algorithm is to enhance the accuracy rate of forecasting and minimized average error rate.
Data mining (sometimes called data or knowledge discovery) is the process of analyzing data from different perspectives and summarizing it into useful information. classification is a general process related to categorization, the process in which ideas and objects are recognized, differentiated, and understood. A classification system is an approach to accomplishing classification.
Augmented Reality interfaces have been extensively researched throughout the past few decades, with many user studies being conducted. This paper examines the landscape of research on augmented reality. We summarise the overall contribution of each field and will then present examples of influential user studies. We identify other areas of research that would be advantageous to possible future studies. There is a trend toward hands-free applications and most user testing is carried out in the laboratory. This research will also help researchers learning the best practices when conducting AR user studies.
A leading cause of death from natural disasters over the last 50years is witnessed by none other than earthquake occurrences which have a negative economic impact on the world and claimed thousands of lives over the years, causing devastation to properties. In this paper, a novel Ensemble Earthquake Prediction Method (EEPM) is proposed and implemented to produce a strong learner (ensemble method) having better accuracy in prediction, less variance, and less errors. Data (parameters) which is continuous in nature is collected from two countries, India and Nepal, for five years, and surveyor’s data (precursor) which is categorical in nature is collected from three countries India, Nepal, and Kenya for five years on the specific earthquake-prone regions. The preprocessed data is generated by combining parameters and precursor data. EEPM focuses on detecting the accurate and better early signs of an earthquake and finding the probability of occurrence of an earthquake in the specified region, i.e., better prediction and robustness. The results of EEPM produced better R 2 and less variance and less error in comparison to individual machine learning methods as well as better accuracy 87.8%, compared to state-of-the-art ensemble methods. The prediction of earthquake will alarm not only the people of the society but also the different organizations to explain the appropriate range of magnitude and dynamics of occurrence of earthquake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.