Modal analysis is one of the preeminent methods used by scientists and engineers to study vibrating structures. The frequency response functions obtained through this method, are, in general, complex-valued. There is, however, no agreed-upon interpretation given to the real and imaginary parts of these functions, even though it is acknowledged that their relative magnitude for different frequencies is related to the behaviour of the corresponding modes. A simple model is deduced to describe the shape of the spectrum associated with a finite-length time-signal. There is very good agreement between results obtained using this model and numerical results obtained for, in this case, the vibration of a guitar top-plate using finite element methods. One interpretation of the relative magnitudes of the real and imaginary parts of the frequency response functions is advanced. It is found that stationary-wave behaviour is associated with the dominance of the real or imaginary part; traveling-wave behaviour, on the other hand, occurs when the real and imaginary parts are of the same order of magnitude, as long as the scale of damping is large enough and resonance peaks in the spectrum are close enough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.