Ethyl methyl carbonate (EMC) is the product of the partial transesterification of dimethyl carbonate (DMC) with ethanol (EtOH). How to modulate the catalyst with suitable acidity and alkalinity is of key importance for achieving both high activity and selectivity toward EMC. Herein, an MgÀ ZnÀ P/AT-ZSM-5 catalyst with moderate basicity and moderate acidity was intelligently designed by the co-doping of MgÀ ZnÀ P after the desilication of ZSM-5. Under the optimized reaction conditions, the EtOH conversion can reach 99.1 % with a high EMC selectivity of 96.3 %. Based on the results of multiple characterizations, the enhanced EtOH conversion and high EMC selectivity should be attributed to the well dispersed supported metal species, and enhanced metal-support interactions, especially the suitable surface acidity and alkalinity property of the catalyst. Such work provides a more reasonable design strategy for the preparation of a catalyst used for the transesterification reaction of DMC and EtOH to selectively produce high-valued EMC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.