The use of remote sensing to monitor surface water bodies has gradually matured. Long-term serial water change analysis and floods monitoring are currently research hotspots of remote sensing hydrology. However, these studies are also faced with some problems, such as coarse temporal or spatial resolution of some remote sensing data. In general, flood monitoring requires high temporal resolution, and small-scale surface water extraction requires high spatial resolution. The machine learning method has been proven to be effective against long-term serial surface water extraction, such as random forests (RFs). MODIS data are well suited for large-scale surface water dynamic analysis and flood monitoring because of its short return cycle and medium spatial resolution. In this paper, the Yangtze River Basin (YRB) in China was selected as the study area, and two MODIS products (MOD09A1 and MOD13Q1) and RF method were used to extract the surface water from 2000 to 2016. Considering the disadvantages of temporal or spatial resolution of these two MODIS products, this study also presents a data fusion method to combine them and get higher spatiotemporal resolution water results. Finally, 762 surface water maps from 2000 to 2016 are obtained, whose temporal and spatial resolution is every eight days and 250 m, respectively. In addition, water extent variation is analyzed and compared to observed precipitation data. The main conclusions are as follows: (1) this constructed approach for long-term serial surface water extraction based on the RF classifier is feasible, and a good fusion method is used to obtain the surface water body with higher spatiotemporal resolution; (2) the maximum area of the surface water extent is 48.53 × 10 3 km 2 , and seasonal and permanent water areas are 20.51 × 10 3 km 2 and 28.01 × 10 3 km 2 , respectively; (3) surface water area is increasing in the YRB, such that seasonal water area decreased by 3450 km 2 , and the permanent water area increased by 3565 km 2 in 2001-2015; (4) precipitation is the main factor causing variation in the surface water bodies, and they both show an increasing trend in 2000-2016. As such, the approach is worth referring to other remote sensing applications, and these products are very both valuable for water resource management and flood monitoring in the study area.
Lakes have an important role in human life and the ecological environment, but they are easily affected by human activity and climate change, especially around urban areas. Hence, it is critical to extract water with a high precision method and monitor long-term sequence dynamic changes in lakes. As the greatest natural lake of the Beijing-Tianjin-Hebei region, Baiyangdian Lake has a significant function in human life, socio-economic development, and regional ecological balance. This lake area has shown large changes due to human activity and climate change. The change monitoring process of the water surface is of great significance in providing support for the management and protection of the lake. The Spectrum Matching based on Discrete Particle Swarm Optimization (SMDPSO) method is a new, robust, and low-cost method for water extraction, that has obvious advantages in extracting complex water surfaces. In this paper, the SMDPSO method was used to extract the water surface of Baiyangdian Lake by Landsat images from 1984 to 2018. This method has a good effect on complex water surface extraction with vegetation, shadows, and so forth, and the Landsat images have higher resolution and longer time series. The main contents and results of this paper are as follows: (1) We verified the applicability of the SMDPSO method in the Baiyangdian Lake using visual interpretation and correlation analysis. The relative errors between observed and extracted results were all less than 5% in spring, summer, and fall, and the correlation coefficient between the water area and water level was 0.96. (2) According to seasonal verification and comparison of the extraction results, the SMDPSO method was used to extract the water surface area of Baiyangdian Lake during spring of the years 1984–2018. Water area changes of Baiyangdian Lake can be divided into four periods: Dry period (1984–1988), degraded period (1989–2000), stable period (2000–2008), and recovery period (2008–2018). The water area reached a maximum of 280 km2 in 1989 and a minimum of 44 km2 in 2002. (3) The possible causes of the changes in the water area of Baiyangdian Lake were also analyzed. The changes were caused by climate and human activities during the first and second periods, but mainly human activities during the third and fourth periods. In fact, effective policies combined with water conservancy projects were directly conducive to improving or even recovering the water and ecological environment of Baiyangdian Lake. Considering its importance for the benign development of the Beijing-Tianjin-Hebei Region and the construction of the Xiong’an New Area, a policy is necessary to ensure that the lake’s ecological environment will not be destroyed under the premise of economic development.
A simple method for estimating the spatial variability of the soil‐water flux from known variability of soil microhydrologic properties is presented. The method is based on the theory of approximating a differentiable function using Taylor‐series expansion (TS‐method). Published data for means and variances of the soil microhydrologic properties were used to estimate the mean and variance of the soil‐water flux in a draining profile of Panoche soil. These values were compared with those estimated using a Monte Carlo simulation procedure (MC‐method) on the same set of data. Relative advantages and disadvantages of these two methods are briefly discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.