Abstract-There exist many approaches that help in pointing developers to the change-prone parts of a software system. Although beneficial, they mostly fall short in providing details of these changes. Fine-grained source code changes (SCC) capture such detailed code changes and their semantics on the statement level. These SCC can be condition changes, interface modifications, inserts or deletions of methods and attributes, or other kinds of statement changes. In this paper, we explore prediction models for whether a source file will be affected by a certain type of SCC. These predictions are computed on the static source code dependency graph and use social network centrality measures and object-oriented metrics. For that, we use change data of the Eclipse platform and the Azureus 3 project. The results show that Neural Network models can predict categories of SCC types. Furthermore, our models can output a list of the potentially change-prone files ranked according to their change-proneness, overall and per change type category.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.