On-line high-efficiency HDF resulted in enhanced removal and lower basal levels of small, medium-sized and protein-bound solutes, which are markers or causative agents of uraemic pathologies, mainly inflammation, secondary hyperparathyroidism and dyslipidaemia. This may contribute to reducing uraemic complications and possibly to improving patient survival.
The aim of the present study was transmembrane pressure (TMP) modulation in high-volume mixed hemodiafiltration (HDF) to optimize efficiency and minimize protein loss. The optimal flow/pressure conditions in on-line mixed HDF assisted with a feedback control of TMP were defined in this prospective randomized study in order to obtain maximal efficiency in solute removal while minimizing potential side effects. Two different TMP profiles in mixed HDF were compared in 12 unselected patients who underwent two study periods of 2 weeks each in cross-over randomized sequence: (A) constant TMP at around 300 mmHg and (B) profiled TMP, in which TMP was slowly increased from a low initial value to the maximal value. In both procedures, the mean volume exchange was 10.6+/-1.4 l/h. Mean filtration fraction was 53%. Instantaneous beta2-microglobulin (beta2-m) clearance was higher at the start of the session with profiled TMP (207+/-35 vs 194+/-28 ml/min, P<0.005), whereas no differences were found at the end (135+/-19 vs 132+/-19 ml/min). Profiled TMP resulted in a higher mean beta2-m clearance of the session (97.0+/-15.4 vs 87.8+/-18.3 ml/min, P<0.01), in lower albumin loss in the first 30 min (0.62+/-0.14 vs 0.98+/-0.18 g, P<0.0001), and, in the whole session (3.98+/-1.19 vs 5.24+/-0.77 g, P<0.001), in higher dialyzer ultrafiltration coefficients and lower resistance indexes. This study showed that the TMP feedback modulation in mixed HDF was highly effective in maintaining very high ultrafiltration rates and filtration fractions, and minimized potential side effects as a result of the improved preservation of membrane permeability and more favorable dialyzer pressure regimen.
Mixed HDF was the most efficient technique in the highest range of safe operating conditions. In mid-dilution HDF, high pressures generated inside the dialyser compromised membrane permeability and limited the total infusion rate, resulting in an overall reduction in solute removal.
Oxidative stress is crucial in red blood cell (RBC) damage induced by activated neutrophils in in vitro experiments. The aim of the study was to evaluate whether the bioincompatibility phenomena occurring during hemodialysis (HD) (where neutrophil activation with increased free radical production is well documented) may have detrimental effects on RBC. We evaluated RBC susceptibility to oxidative stress before and after HD in 15 patients using Cuprophan, cellulose triacetate, and polysulfone membrane. RBC were incubated with t-butyl hydroperoxide as an oxidizing agent both in the presence and in the absence of the catalase inhibitor sodium azide. The level of malonaldehyde (MDA), a product of lipid peroxidation, was measured at 0, 5, 10, 15, and 30 min of incubation. When Cuprophan membrane was used, the MDA production was significantly higher after HD, indicating an increased susceptibility to oxidative stress in comparison to pre-HD. The addition of sodium azide enhanced this phenomenon. Both cellulose triacetate and polysulfone membranes did not significantly influence RBC susceptibility to oxidative stress. Neither the level of RBC reduced glutathione nor the RBC glutathione redox ratio changed significantly during HD with any of the membranes used. The RBC susceptibility to oxidative stress was influenced in different ways according to the dialysis membrane used, being increased only when using the more bioincompatible membrane Cuprophan, where neutrophil activation with increased free radical production is well documented. The alterations found in this study might contribute to the reduced RBC longevity of HD patients where a bioincompatible membrane is used.
Background Anemia is a major comorbidity of patients with end-stage renal disease and poses an enormous economic burden to health-care systems. High dose erythropoiesis-stimulating agents (ESAs) have been associated with unfavorable clinical outcomes. We explored whether mixed-dilution hemodiafiltration (Mixed-HDF), based on its innovative substitution modality, may improve anemia outcomes compared to the traditional post-dilution hemodiafiltration (Post-HDF). Methods We included 174 adult prevalent dialysis patients (87 on Mixed-HDF, 87 on Post-HDF) treated in 24 NephroCare dialysis centers between January 2010 and August 2016 into this retrospective cohort study. All patients were dialyzed three times per week and had fistula/graft as vascular access. Patients were matched at baseline and followed over a one-year period. The courses of hemoglobin levels (Hb) and monthly ESA consumption were compared between the two groups with linear mixed models. Results Mean baseline Hb was 11.9±1.3 and 11.8±1.1g/dl in patients on Mixed- and Post-HDF, respectively. While Hb remained stable in patients on Mixed-HDF, it decreased slightly in patients on Post-HDF (at month 12: 11.8±1.2 vs 11.1±1.2g/dl). This tendency was confirmed by our linear mixed model (p = 0.0514 for treatment x time interaction). Baseline median ESA consumption was 6000 [Q1:0;Q3:16000] IU/4 weeks in both groups. Throughout the observation period ESA doses tended to be lower in the Mixed-HDF group (4000 [Q1:0;Q3:16000] vs 8000 [Q1:0;Q3:20000] IU/4 weeks at month 12; p = 0.0791 for treatment x time interaction). Sensitivity analyses, adjusting for differences not covered by matching at baseline, strengthened our results (Hb: p = 0.0124; ESA: p = 0.0687). Conclusions Results of our explorative study suggest that patients on Mixed-HDF may have clinical benefits in terms of anemia management. This may also have a beneficial economic impact. Future studies are needed to confirm our hypothesis-generating results and to provide additional evidence on the potential beneficial effects of Mixed-HDF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.