The interaction between silver nanoparticles and herpesviruses is attracting great interest due to their antiviral activity and possibility to use as microbicides for oral and anogenital herpes. In this work, we demonstrate that tannic acid modified silver nanoparticles sized 13 nm, 33 nm and 46 nm are capable of reducing HSV-2 infectivity both in vitro and in vivo. The antiviral activity of tannic acid modified silver nanoparticles was size-related, required direct interaction and blocked virus attachment, penetration and further spread. All tested tannic acid modified silver nanoparticles reduced both infection and inflammatory reaction in the mouse model of HSV-2 infection when used at infection or for a post-infection treatment. Smaller-sized nanoparticles induced production of cytokines and chemokines important for anti-viral response. The corresponding control buffers with tannic acid showed inferior antiviral effects in vitro and were ineffective in blocking in vivo infection. Our results show that tannic acid modified silver nanoparticles are good candidates for microbicides used in treatment of herpesvirus infections.
Mucoadhesive gelling systems with tannic acid modified silver nanoparticles were developed for effective treatment of herpes virus infections. To increase nanoparticle residence time after local application, semi solid formulations designed from generally regarded as safe (GRAS) excipients were investigated for their rheological and mechanical properties followed with ex vivo mucoadhesive behavior to the porcine vaginal mucosa. Particular effort was made to evaluate the activity of nanoparticle-based hydrogels toward herpes simplex virus (HSV) type 1 and 2 infection in vitro in immortal human keratinocyte cell line and in vivo using murine model of HSV-2 genital infection. The effect of infectivity was determined by real time quantitative polymerase chain reaction, plaque assay, inactivation, attachment, penetration and cell-to-cell assessments. All analyzed nanoparticle-based hydrogels exhibited pseudoplastic and thixotropic properties. Viscosity and mechanical measurements of hydrogels were found to correlate with the mucoadhesive properties. The results confirmed the ability of nanoparticle-based hydrogels to affect viral attachment, impede penetration and cell-to-cell transmission, although profound differences in the activity evoked by tested preparations toward HSV-1 and HSV-2 were noted. In addition, these findings demonstrated the in vivo potential of tannic acid modified silver nanoparticle-based hydrogels for vaginal treatment of HSV-2 genital infection.
Sport training leads to adaptation to physical effort that is reflected by the changes in blood parameters. In equine endurance athletes, blood testing is accepted as a support in training, however, only the changes before versus after exercise in creatine phosphokinase activity (CPK) and basic blood parameters are usually measured. This study is the first longitudinal investigation of the changes in routinely measured blood parameters and, additionally, serum amyloid A (SAA), during seven months, in Arabian horses introduced to endurance training and competing in events for young horses. It has been determined that CPK, aspartate aminotransferase (AST), packed cell volume (PCV), hemoglobin concentration, red blood cell count (RBC), and concentration of total serum protein (TSP) slightly increased after training sessions and competitions in similar manner. The increase in white blood cell (WBC) count was higher after competitions and SAA increased only after competitions. Total protein concentration was the only parameter that increased with training during a 7-month program. SAA indicated only in the case of heavy effort, and, it thus may be helpful in the monitoring of training in young horses. In an optimal program, its concentration should not increase after a training session but only after heavy effort, which should not be repeated too often.
Canine babesiosis is a tick-borne disease caused by parasites of the genus Babesia. Tumour necrosis factor alpha (TNF-α) is a cytokine that plays a role in the pathogenesis of canine babesiosis. In this study, the authors determined the concentration of serum TNF-α in 11 dogs infected with Babesia canis and calculated Spearman’s rank correlations between the concentration of TNF-α and blood pressure, and between TNF-α and indices of renal damage such as: fractional excretion of sodium (FE(Na+)), urinary creatinine to serum creatinine ratio (UCr/SCr), renal failure index (RFI), urine specific gravity (USG) and urinary protein to urinary creatinine ratio (UPC). The results demonstrated statistically significant strong negative correlations between TNF-α and systolic arterial pressure (r = −0.7246), diastolic arterial pressure (r = −0.6642) and mean arterial pressure (r = −0.7151). Serum TNF-α concentration was also statistically significantly correlated with FE(Na+) (r = 0.7056), UCr/SCr (r = −0.8199), USG (r = −0.8075) and duration of the disease (r = 0.6767). The results of this study show there is an increase of serum TNF-α concentration during canine babesiosis, and the increased TNF-α concentration has an influence on the development of hypotension and renal failure in canine babesiosis. This probably results from the fact that TNF-α is involved in the production of nitric oxide and induction of vasodilation and hypotension, which may cause renal ischaemia and hypoxia, and finally acute tubular necrosis and renal failure.
Monocytic cells represent important cellular elements of the innate and adaptive immune responses in viral infections. We assessed the role of Fas/FasL in promoting monocyte apoptosis during HSV-2 infection by using an in vitro model based on the murine RAW 264.7 monocytic cell line and an in vivo murine model of HSV-2 infection applied to C57BL6, MRL-Faslpr/J (Fas−/−) and C3-Faslgld/J (FasL−/−) mice. HSV-2 infection of the monocytic cell line led to early induction of apoptosis, with no protective expression of anti-apoptotic Bcl-2. HSV-2 infected monocytes up-regulated Fas and FasL expression early during in vitro infection but were susceptible to Fas induced apoptosis. The vaginal monocytes in the HSV-2 murine model of infection up-regulated FasL expression and were susceptible to Fas induced apoptosis. HSV-2 infection of Fas and FasL- deficient mice led to decreased apoptosis of monocytes and impaired recruitment of NK, CD4+ and CD8+ T cells within the infection sites. The vaginal lavages of HSV-2 infected Fas and FasL- deficient showed decreased production of CXCL9, CXCL10 and TNF-α in comparison to HSV-2 infected wild-type mice strain. The decreased recruitment of immune competent cells was accompanied by delayed virus clearance from the infected tissue. Triggering of the Fas receptor on HSV-2 infected monocytes in vitro up-regulated the expression of CXCL9 chemokines and the cytokine TNF-α. Our study provides novel insights on the role of Fas/FasL pathway not only in apoptosis of monocytes but also in regulating local immune response by monocytes during HSV-2 infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.