European ash (Fraxinus excelsior) is currently battling an onslaught of ash dieback, a disease emerging in the greater part of its native area, brought about by the introduction of the ascomycete Hymenoscyphus fraxineus (= Hymenoscyphus pseudoalbidus). The closely-related fungus Hymenoscyphus albidus, which is indigenous to Europe, is non-pathogenic when in contact with F. excelsior, but could pose a potential risk to exotic Fraxinus species. The North American green ash (Fraxinus pennsylvanica) is planted widely throughout Europe and regenerates naturally within this environment but little is known about the susceptibility of this species to ash dieback. We performed wound inoculations with both fungi (nine strains of H. fraxineus and three strains of H. albidus) on rachises and stems of F. excelsior and F. pennsylvanica under field conditions in Southern Poland. Necrosis formation was evaluated after two months on the rachises and after 12 months on the stems. After inoculation of H. albidus, only small lesions (of up to 1.3 cm in length) developed on the F. excelsior and F. pennsylvanica rachises, but with no significant distinction from the controls. Hymenoscyphus albidus did not cause necrotic lesions on the stems of either Fraxinus species. In contrast, H. fraxineus induced necroses on all inoculated rachises of both ash species with mean lengths of 8.4 cm (F. excelsior) and 1.9 cm (F. pennsylvanica). Necroses also developed on all of the inoculated F. excelsior stems (mean length 18.0 cm), whereas on F. pennsylvanica such lesions only occurred on about 5% of the stems (mean length 1.9 cm). The differences between strains were negligible. No necroses were observed on the control plants. Reisolations of H. albidus were only successful in around 8–11% of the cases, while H. fraxineus was reisolated from 50–70% of the inoculated organs showing necrotic lesions. None of the Hymenoscyphus species were isolated from the control plants. Our data confirm H. fraxineus’ high virulence with regards to F. excelsior and demonstrate a low virulence in relation to F. pennsylvanica under field conditions in Poland. Hymenoscyphus albidus did not express any perceivable pathogenicity on both host species.
A large part of the area in Europe in which Fraxinus excelsior is native is currently affected by ash dieback, a threatening disease caused by the ascomycetous fungus Hymenoscyphus fraxineus. Fungi other than H. fraxineus also occur in large numbers on stems of the dying ash trees. To clarify their possible role in the dieback process, six fungal species common on dying stems and twigs of ash in Poland, i.e. Cytospora pruinosa, Diaporthe eres, Diplodia mutila, Fusarium avenaceum, F. lateritium and F. solani, were tested for pathogenicity using a test based on artificial wound inoculations of 6‐year‐old F. excelsior plants under field conditions, with H. fraxineus included for comparison. There were significant differences in index of pathogenicity among the fungi tested. Hymenoscyphus fraxineus (mean index 5.78) was the most pathogenic. Diplodia mutila (4.23) and C. pruinosa (4.02) were significantly less pathogenic than H. fraxineus, but significantly more than the other fungi. Diaporthe eres (2.43), F. avenaceum (1.92), F. solani (1.86) and F. lateritium (1.08) were the least pathogenic (P < 0.0001). The extent of disease symptoms caused by F. solani and F. lateritium was statistically similar to the control (P = 0.05). All tested fungi were successfully reisolated from inoculated stems. The contribution of the results to understanding the possible role of these fungi in the ash dieback process in F. excelsior, particularly in trees weakened after primary infection by H. fraxineus, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.