Thermally activated
delayed fluorescence (TADF) has recently become
an extensively investigated phenomenon due to its high potential for
application in organic optoelectronics. Currently, there is still
lack of a model describing correctly basic photophysical parameters
of organic TADF emitters. This article presents such a photophysical
model describing the rates of intersystem crossing (ISC), reverse
ISC (rISC), and radiative deactivation in various media and emphasizing
key importance of molecular vibrations on the example of a popular
TADF dye 9,10-dihydro-9,9-dimethyl-10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-acridine
(DMAC-TRZ). The presented experimental and theoretical investigations
prove that ISC and rISC can occur efficiently between the singlet
and triplet states of the same charge-transfer nature (
1
CT and
3
CT, respectively). In emitters with the orthogonal
donor and acceptor fragments, such spin-forbidden
1
CT ↔
3
CT transitions are activated by molecular vibrations. Namely,
the change of dihedral angle between the donor and the acceptor affords
reasonable spin–orbit coupling, which together with a small
energy gap and reorganization energy enable
1
CT ↔
3
CT transition rates reaching 1 × 10
7
s
–1
. Evidence of direct
1
CT ↔
3
CT spin-flip and negligible role of a second triplet state,
widely believed as a key parameter in the design of (r)ISC materials,
change significantly the current understanding of TADF mechanism.
In authors’ opinion, photophysics, and molecular design principles
of TADF emitters should be revised considering the importance of vibrationally
enhanced
1
CT ↔
3
CT transitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.