Interest in measuring displacement gradients, such as rotation and strain, is growing in many areas of geophysical research. This results in an urgent demand for reliable and field-deployable instruments measuring these quantities. In order to further establish a high-quality standard for rotation and strain measurements in seismology, we organized a comparative sensor test experiment that took place in November 2019 at the Geophysical Observatory of the Ludwig-Maximilians University Munich in Fürstenfeldbruck, Germany. More than 24 different sensors, including three-component and single-component broadband rotational seismometers, six-component strong-motion sensors and Rotaphone systems, as well as the large ring laser gyroscopes ROMY and a Distributed Acoustic Sensing system, were involved in addition to 14 classical broadband seismometers and a 160 channel, 4.5 Hz geophone chain. The experiment consisted of two parts: during the first part, the sensors were co-located in a huddle test recording self-noise and signals from small, nearby explosions. In a second part, the sensors were distributed into the field in various array configurations recording seismic signals that were generated by small amounts of explosive and a Vibroseis truck. This paper presents details on the experimental setup and a first sensor performance comparison focusing on sensor self-noise, signal-to-noise ratios, and waveform similarities for the rotation rate sensors. Most of the sensors show a high level of coherency and waveform similarity within a narrow frequency range between 10 Hz and 20 Hz for recordings from a nearby explosion signal. Sensor as well as experiment design are critically accessed revealing the great need for reliable reference sensors.
The recent rapid development of rotation rate sensor technology opens new opportunities for their application in more and more fields. In this paper, the potential of rotational sensors for the modal analysis of full-scale civil engineering structural elements is experimentally examined. For this purpose, vibrations of two 6-m long beams made of ultra-high performance concrete (UHPC) were measured using microelectromechanical system (MEMS) rotation rate sensors. The beams were excited to vibrations using an impact hammer and a dynamic vibration exciter. The results of the experiment show that by using rotation rate sensors, one can directly obtain derivatives of mode shapes and deflection shapes. These derivatives of mode shapes, often called “rotational modes”, bring more information regarding possible local stiffness variations than the traditional transversal and deflection mode shapes, so their extraction during structural health monitoring is particularly useful. Previously, the rotational modes could only be obtained indirectly (e.g., by central difference approximation). Here, with the application of rotation rate sensors, one can obtain rotational modes and deflection shapes with a higher precision. Furthermore, the average strain rate and dynamic strain were acquired using the rotation rate sensors. The laboratory experiments demonstrated that rotation rate sensors were matured enough to be used in the monitoring and modal analyses of full-scale civil engineering elements (e.g., reinforced concrete beams).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.