It is essential for the marine navigator conducting maneuvers of his ship at sea to know future positions of himself and target ships in a specific time span to effectively solve collision situations. This article presents an algorithm of ship movement trajectory prediction, which, through data fusion, takes into account measurements of the ship’s current position from a number of doubled autonomous devices. This increases the reliability and accuracy of prediction. The algorithm has been implemented in NAVDEC, a navigation decision support system and practically used on board ships.
The known navigational systems in use perform information functions and as such are helpful in the process of safe conduct of a vessel. One of the ways to assist in reducing the number of marine accidents is the development of systems which perform decision support functions, i.e. automatically generate solutions to collision situations. The use of information (and communication) technologies including knowledge engineering allows the generation of proposals for anti-collision manoeuvres taking into account the COLREGs. Demand for further enhancement of navigational safety by limiting human errors has initiated a trend to convert navigational information systems into decision support systems. The implementation of decision support systems will potentially reduce the number of human errors, which translates into a reduction of accidents at sea and their adverse consequences. This paper presents a summary of the research to date on the navigational decision support system NAVDEC. The system has been positively verified in laboratory conditions and in field tests – on a motor ferry and a sailing ship. Challenges associated with the development and implementation of such systems are outlined.
The problem of data fusion in a navigational decision support system on a sea-going vessel
has been analyzed. The computing algorithm herein applied for solving the formulated
problem is based on a multi-sensor Kalman filter. On the practical side, results of the
tests done in real conditions are shown. The tests conducted onboard m/s Nawigator XXI,
have been aimed at the verification of the proposed computing algorithm implemented in
a prototype navigational decision support system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.