The application of hydroponic cultivation fertilized with biologically nitrified synthetic urine can produce nitrate-rich fertilizer for lettuce (Lactuca sativa var. capitata L.). The mounting water crisis and depletion of natural resources makes nitrogen recovery from human urine a practical option. Nitrified urine can be used in indoor vertical hydroponic cultivation and is characterized by a high degree of element recovery. Because of its high ammonium content, hydrolyzed fresh urine may be toxic. A nitrification sequencing batch reactor with suspended activated sludge biomass ensured urine stabilization and biological conversion into nitrate-rich fertilizer. The diluted nitrate-rich fertilizer was then supplied for soilless cultivation. The results show that diluted nitrified urine is an excellent source of bioavailable nitrogen and phosphorus and, with proper enrichment with microelements, could replace commercial fertilizers in hydroponic systems. The yield and quality parameters of lettuce cultivated with enriched urine were comparable to those obtained with a commercial fertilizer. The mass balance calculation showed that industry-scale lettuce production can be based on urine fertilizer collected from a few hundred people for a single unit.
Previous research indicated the potential use of struvite (STR) as an alternative source of phosphorus (P) in crop production. A greenhouse experiment was conducted to evaluate the effect of STR and triple superphosphate (TSP) on the growth and chemical composition of butterhead lettuce grown on peat substrate over a three-month period (May–July). Both alternative (STR) and conventional (TSP) fertilizers were applied at three rates: (1) recommended rate based on the elemental content of substrate and crop nutritional need; (2) reduced rate (50% lower than recommended); and (3) increased rate (50% higher than recommended). Unfertilized (control) plants were also grown in the pot experiment. As expected, fertilizer application tended to increase the content of heavy metals in the substrate. Thus, an increase in Zn, Pb, and Cu content in peat substrate was found following STR amendments. However, compared with unfertilized plants, the applied rates of the STR and TSP fertilizers did not increase the content of Cd and Cu in the plant leaf, while Hg content was below the detection limit. In addition, Zn content in the plant leaf significantly decreased following STR and TSP applications. In comparison to unfertilized plants, both alternative and conventional fertilizers increased the content of P and nitrate nitrogen (N-NO3−) in the plant leaf while their effect on Mg content was negligible. The increased rate of STR was the best fertilizer treatment because it produced the largest number of leaves, which were also characterized by the highest P content. Our findings showed that STR was an effective source of P in butterhead lettuce cultivation without adverse effects on heavy metal accumulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.