Novel substances of expected doping activity are constantly introduced to the market. β-Methylphenethylamine (BMPEA) is classified as a doping agent by the World Anti-Doping Agency as it is a positional isomer of amphetamine. In this work, the development and application of a simple and rapid analytical procedure that enables discrimination between both isomers is described. The analytes of interest were extracted from urine by a two-step liquid–liquid extraction and then analyzed by UPLC/MS/MS under isocratic conditions. The entire analytical procedure was validated by evaluating its selectivity, discrimination capabilities, carry-over, sensitivity, and influence of matrix effects on its performance. Application of the method resulted in detection of BMPEA in eight anti-doping samples, including the first report of adverse analytical finding regarding its use. Further analysis showed that BMPEA may be eliminated unchanged along with its phase II conjugates, the hydrolysis of which may considerably improve detection capabilities of the method. Omission of the hydrolysis step may therefore, produce false-negative results. Testing laboratories should also carefully examine their LC/MS/MS-based amphetamine and BMPEA findings as both isomers fragment yielding comparable collision-induced dissociation spectra and their insufficient chromatographic separation may result in misidentification. This is of great importance in case of forensic analyses as BMPEA is not controlled by the public law, and its manufacturing, distribution, and use are legal.
Higenamine (Norcoclaurine) is a very popular substance in Chinese medicine and is present in many plants. The substance may be also found in supplements or nutrients, consumption of which may result in violation of anti-doping rules. Higenamine is prohibited in sport at all times and included in Class S3 (β-2-agonists) of the World Anti-Doping Agency (WADA) 2017 Prohibited List. The presence of higenamine in urine samples at concentrations greater than or equal to 10 ng/mL constitutes an adverse analytical finding (AAF). This work presents a new metabolite of higenamine in urine sample which was identified by means of ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Samples were prepared according to 2 protocols - a Dilute and Shoot (DaS) approach and a method involving acid hydrolysis and double liquid-liquid extraction (LLE). To meet the requirements typical for a confirmatory analysis, the screening procedure was further developed. In samples prepared by the DaS method, 2 peaks were observed; the earlier one was specific for higenamine and the later one unknown. MS scan analysis showed mass about 80 Da higher than that of higenamine. In turn, in samples prepared in accordance with the protocol involving hydrolysis, an increase in the area under peak for higenamine was observed, while the second peak was absent. It seems that the described strategy of detection of higenamine in urine avoids false negative results.
Although various attempts have been made to eliminate doping in sport, hitherto they all have proved futile. Moreover, the main class of substances that jeopardises the fair play rule remains the same -anabolic androgenic steroids (AAS). To date, longitudinal monitoring of the fluctuations of the endogenous steroids content for a given athlete is regardeded as the most effective approach to the detection of AAS abuse. This is based on the fact that the activity of the steroid biosynthesis pathway may undergo significant changes in response to the AAS administration. This paper presents the entire analytical procedure for quantification of steroids crucial for the Athlete Biological Passport (ABP): testosterone, epitestosterone, dehydroepiandrosterone, androsterone, etiocholanolone, 5-α-androstandiol and 5-β-androstandiol. The procedure consists of a four-step sample preparation process followed by analysis by gas chromatography coupled with mass spectrometry. The limits of quantification for the substances listed above were; 0.44 ng mL −1 , 2.07 ng mL −1 , 1.24 ng mL −1 , 62.49 ng mL −1 , 36.20 ng mL −1 , 16.90 ng mL −1 and 14.92 ng mL −1 , respectively. Aqueous solutions containing deuterated and non-deuterated steroids were used for calibration purposes. Subsequently, the validation parameters, e.g., precision, accuracy and recovery were evaluated for each substance individually.
Year on year, one can observe an increase in the use of addictive substances. This leads to occurring the problem of addiction as well as the use of psychoactive substances as a serious hazard to road users. The Regulation of the Minister of Health on agents acting similarly to alcohol and the conditions and manner of conducting research on their presence in the human body, requires adequate benchmarks for performing these tests. An importantfactor, from consultative point of view, is the knowledge of the chemical structure of substances belonging to different groups of drugs of abuse, their metabolic transformations that occur in the body as well as their influence on the body. This is to aid in the proper interpretation of the results of the analytical tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.