Antibodies are versatile molecular binders with an established and growing role as therapeutics. Computational approaches to developing and designing these molecules are being increasingly used to complement traditional lab-based processes. Nowadays, in silico methods fill multiple elements of the discovery stage, such as characterizing antibody–antigen interactions and identifying developability liabilities. Recently, computational methods tackling such problems have begun to follow machine learning paradigms, in many cases deep learning specifically. This paradigm shift offers improvements in established areas such as structure or binding prediction and opens up new possibilities such as language-based modeling of antibody repertoires or machine-learning-based generation of novel sequences. In this review, we critically examine the recent developments in (deep) machine learning approaches to therapeutic antibody design with implications for fully computational antibody design.
Nanobodies, a subclass of antibodies found in camelids, are versatile molecular binding scaffolds composed of a single polypeptide chain. The small size of nanobodies bestows multiple therapeutic advantages (stability, tumor penetration) with the first therapeutic approval in 2018 cementing the clinical viability of this format. Structured data and sequence information of nanobodies will enable the accelerated clinical development of nanobody-based therapeutics. Though the nanobody sequence and structure data are deposited in the public domain at an accelerating pace, the heterogeneity of sources and lack of standardization hampers reliable harvesting of nanobody information. We address this issue by creating the Integrated Database of Nanobodies for Immunoinformatics (INDI, http://naturalantibody.com/nanobodies). INDI collates nanobodies from all the major public outlets of biological sequences: patents, GenBank, next-generation sequencing repositories, structures and scientific publications. We equip INDI with powerful nanobody-specific sequence and text search facilitating access to >11 million nanobody sequences. INDI should facilitate development of novel nanobody-specific computational protocols helping to deliver on the therapeutic promise of this drug format.
Motivation Rational design of therapeutic antibodies can be improved by harnessing the natural sequence diversity of these molecules. Our understanding of the diversity of antibodies has recently been greatly facilitated through the deposition of hundreds of millions of human antibody sequences in next-generation sequencing (NGS) repositories. Contrasting a query therapeutic antibody sequence to naturally observed diversity in similar antibody sequences from NGS can provide a mutational roadmap for antibody engineers designing biotherapeutics. Because of the sheer scale of the antibody NGS datasets, performing queries across them is computationally challenging. Results To facilitate harnessing antibody NGS data, we developed AbDiver (http://naturalantibody.com/abdiver), a free portal allowing users to compare their query sequences to those observed in the natural repertoires. AbDiver offers three antibody-specific use-cases: 1) compare a query antibody to positional variability statistics precomputed from multiple independent studies 2) retrieve close full variable sequence matches to a query antibody and 3) retrieve CDR3 or clonotype matches to a query antibody. We applied our system to a set of 742 therapeutic antibodies, demonstrating that for each use-case our system can retrieve relevant results for most sequences. AbDiver facilitates the navigation of vast antibody mutation space for the purpose of rational therapeutic antibody design. Availability AbDiver is freely accessible at http://naturalantibody.com/abdiver.
Nanobodies, a subclass of antibodies found in camelids, are a versatile molecular binding scaffold composed of a single polypeptide chain. The small size of nanobodies bestows multiple therapeutic advantages (stability, tumor penetration) with the first therapeutic approval in 2018 cementing the clinical viability of this format. Structured data and sequence information of nanobodies will enable the accelerated clinical development of nanobody-based therapeutics. Though the nanobody sequence and structure data are deposited in the public domain at an accelerating pace, the heterogeneity of sources and lack of standardization hampers reliable harvesting of nanobody information. We address this issue by creating the Integrated Database of Nanobodies for Immunoinformatics (INDI, http://research.naturalantibody.com/nanobodies). INDI collates nanobodies from all the major public outlets of biological sequences: patents, GenBank, next-generation sequencing repositories, structures and scientific publications. We equip INDI with powerful nanobody-specific sequence and text search facilitating access to more than 11 million nanobody sequences. INDI should facilitate development of novel nanobody-specific computational protocols helping to deliver on the therapeutic promise of this drug format.
MotivationRational design of therapeutic antibodies can be improved by harnessing the natural sequence diversity of these molecules. Our understanding of the diversity of antibodies has recently been greatly facilitated through the deposition of hundreds of millions of human antibody sequences in next-generation sequencing (NGS) repositories. Contrasting a query therapeutic antibody sequence to naturally observed diversity in similar antibody sequences from NGS can provide a mutational road-map for antibody engineers designing biotherapeutics. Because of the sheer scale of the antibody NGS datasets, performing queries across them is computationally challenging.ResultsTo facilitate harnessing antibody NGS data, we developed AbDiver (http://naturalantibody.com/abdiver), a free portal allowing users to compare their query sequences to those observed in the natural repertoires. AbDiver offers three antibody-specific use-cases: 1) compare a query antibody to positional variability statistics precomputed from multiple independent studies 2) retrieve close full variable sequence matches to a query antibody and 3) retrieve CDR3 or clonotype matches to a query antibody. We applied our system to a set of 742 therapeutic antibodies, demonstrating that for each use-case our system can retrieve relevant results for most sequences. AbDiver facilitates the navigation of vast antibody mutation space for the purpose of rational therapeutic antibody design and engineering.AvailabilityAbDiver is freely accessible at http://naturalantibody.com/abdiver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.