Crossed-lamellar microstructures are the most common shell-forming biomaterials in mollusks. Because of their complex hierarchical 3D arrangement and small crystallite size, previous crystallographic studies are scarce and have centered on particular species with no comprehensive analysis available. To evaluate the crystallographic diversity of the crossed-lamellar microstructures, we have studied a large set of bivalve and gastropod species with crossed-lamellar layers using X-ray diffraction and electron backscatter diffraction. From the number, distribution, and relationships of maxima, we have classified pole figures into nine different recurring crystallographic patterns. According to their crystallographic equivalences, these patterns can be grouped into five groups. A first division is established according to whether there is one or two main orientations for the c-axis of aragonite. In the latter case, each orientation corresponds to one of the two sets of alternating first-order lamellae. The two main orientations of the c-axis diverge by rotation within the plane of the first-order lamellae around either a common a- or b-axis. We also show how some patterns may derive from others. Patterns with two c-axis orientations represent crystal relationships until now completely unknown in biogenic and abiogenic aragonite and are most likely produced by particular proteomic pools
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.