Self-supervised learning holds promise to revolutionize molecule property prediction -a central task to drug discovery and many more industries -by enabling data efficient learning from scarce experimental data. Despite significant progress, non-pretrained methods can be still competitive in certain settings. We reason that architecture might be a key bottleneck. In particular, enriching the backbone architecture with domain-specific inductive biases has been key for the success of self-supervised learning in other domains. In this spirit, we methodologically explore the design space of the self-attention mechanism tailored to molecular data. We identify a novel variant of self-attention adapted to processing molecules, inspired by the relative self-attention layer, which involves fusing embedded graph and distance relationships between atoms. Our main contribution is Relative Molecule Attention Transformer (R-MAT): a novel Transformer-based model based on the developed self-attention layer that achieves state-of-the-art or very competitive results across a wide range of molecule property prediction tasks.
Large-scale transformer-based methods are gaining popularity as a tool for predicting the properties of chemical compounds, which is of central importance to the drug discovery process. To accelerate their development and dissemination among the community, we are releasing HuggingMolecules -- an open-source library, with a simple and unified API, that provides the implementation of several state-of-the-art transformers for molecular property prediction. In addition, we add a comparison of these methods on several regression and classification datasets. HuggingMolecules package is available at: github.com/gmum/huggingmolecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.