Despite exhibiting very high theoretical data rates, in practice, the performance of LTE-U/LAA and WiFi networks is severely limited under cross-technology coexistence scenarios in the unlicensed 5 GHz band. As a remedy, recent research shows the need for collaboration and coordination among colocated networks. However, enabling such collaboration requires an information exchange that is hard to realize due to completely incompatible network protocol stacks. We propose OfdmFi, the first cross-technology communication scheme that enables direct bidirectional over-the-air communication between LTE-U/LAA and WiFi with minimal overhead to their legacy transmissions. Requiring neither hardware nor firmware changes in commodity technologies, OfdmFi leverages the standard-compliant possibility of generating message-bearing power patterns, similar to punched cards from the early days of computers, in the timefrequency resource grid of an OFDM transmitter which can be cross-observed and decoded by a heterogeneous OFDM receiver. As a proof-of-concept, we have designed and implemented a prototype using commodity devices and SDR platforms. Our comprehensive evaluation reveals that OfdmFi achieves robust bidirectional CTC between both systems with a data rate up to 84 kbps, which is more than 125× faster than state-of-the-art.
Wireless local area networks (WLANs) empowered by IEEE 802.11 (Wi-Fi) hold a dominant position in providing Internet access thanks to their freedom of deployment and configuration as well as the existence of affordable and highly interoperable devices. The Wi-Fi community is currently deploying Wi-Fi 6 and developing Wi-Fi 7, which will bring higher data rates, better multi-user and multi-AP support, and, most importantly, improved configuration flexibility. These technical innovations, including the plethora of configuration parameters, are making next-generation WLANs exceedingly complex as the dependencies between parameters and their joint optimization usually have a non-linear impact on network performance. The complexity is further increased in the case of dense deployments and coexistence in shared bands. While classical optimization approaches fail in such conditions, machine learning (ML) is able to handle complexity. Much research has been published on using ML to improve Wi-Fi performance and solutions are slowly being adopted in existing deployments. In this survey, we adopt a structured approach to describe the various Wi-Fi areas where ML is applied. To this end, we analyze over 250 papers in the field, providing readers with an overview of the main trends. Based on this review, we identify specific open challenges and provide general future research directions.
As the radio spectrum has become the bottleneck resource with increasing volume of mobile data and ultra-dense network deployments, it is crucial to use spectrum more flexibly in time, space, and frequency dimensions. However, higher efficiency in spectrum usage facilitated by flexible spectrum allocation comes with a cost, namely the increased complexity of spectrum monitoring and management. Identifying the transmitters is at the interest of particularly spectrum enforcement authorities to ensure that spectrum is used as intended by the legitimate users of the spectrum. For a scalable, efficient, and highly-accurate operation, we propose a crowd-sensing based solution where sensing devices report their measured receive power levels to a central entity which later fuses the collected information for localizing an unknown number of transmitters. Our solution, referred to as DeepTxFinder, leverages deep learning to handle many sources of uncertainty in the operation environment: namely number of transmitters, their transmission power levels, and channel conditions (shadowing). Using deep-learning, DeepTxFinder distinguishes itself from the prior state-of-the art which requires knowledge of the number and transmission power of transmitters or require the transmitters to be well separated in space by tens to hundreds of meters making them ill-suited for application in expected ultra-dense deployment of smallcells. Moreover, we propose a tiling-based approach to increase the scalability of our proposal by reducing the computational complexity. Our simulation studies show that DeepTxFinder can provide a high detection accuracy even only by collecting data from a very small number of sensors. More specifically, with 1 %-2 % sensor density DeepTxFinder can estimate the number of transmitters and their locations with high probability which proves that sparse sensing is feasible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.