The paper presents laboratory tests results of wear in the abrasive mass of cultivator coulters subjected to coated electrode pad welding. In the first stage of the test, one type of electrode was used and a padding weld was applied to the coulter surface in three different shape variants (perpendicular, parallel to the abrasive mass stream and V-shaped). The lowest abrasive wear was obtained for samples with a padding weld deposited perpendicularly to the abrasive mass stream. Therefore, in the second stage of the research, this padding weld shape was selected and made using three different electrodes. Tests of abrasive wear both in the first and the second stage of the experiment were carried out at a distance of 100 km by the "rotating bowl unit" method. Both the direction of the application of the padding weld (shape) and the chemical composition of the electrode used in the pad welding process significantly increased the resistance to abrasive wear compared to coulters whose surface has not been welded.
In this study a stainless austenitic steel 1.4550 was laser heat treated with diode laser. The influence a gouache coating on remelted steel substrate was carry out. The cooling system during laser melted was analysis as well. Melted layers were manufactured with different laser beam power between 0.6 kW and 1.4 kW, constant scanning laser beam speed vl = 5.76 m/min and laser beam diameter equal dl = 1.2 mm. The surface was treated at room temperature and under CO2 cooling conditions and the results were compered. With the increase of the laser beam power, the dimensions of the laser tracks increase. The depth of laser tracks varies significantly than their width. The deepest melted layer was observed for a material that wasn’t coated by any of absorbent paste and when there wasn’t cooling system.
This paper presents the analysis of emissivity engineering materials according to temperature. Experiment is concerned on difficult to machine materials, which may be turned with laser assisting. Cylindrical samples made of nickel-based alloys Inconel 625, Inconel 718, Waspaloy and tungsten-carbides based on cobalt matrix were analyzed. The samples’ temperature in contact method was compared to the temperature measured by non-contact pyrometers. Based on this relative, the value of the emissivity coefficient was adjusted to the right indication of pyrometers.
The paper presents the results of studies of microstructure, mechanical and physicochemical properties of surface layers produced by laser modification of the diffusion boron layer on Monel® Alloy 400. The diffusion boron layers were produced at 950 °C for 6 h. The gas-contact method was used in an open retort furnace. The process was carried out in a powder mixture containing B4C carbide as a boron source. The next stage was the modification of the boron layer with a diode laser beam of a nominal power of 3 kW. A constant power of 1400 W of the laser beam was used. The scanning speed was variable (successively 5 m/min, 25 m/min, 50 m/min). In order to determine the best parameters, single tracks were created, after which multiple tracks were prepared using previously selected parameters. It was found that both the diffusion borided layer and the laser modified layer had better properties than the substrate material. Both these processes contributed to an increase in corrosion resistance, hardness and wear resistance. It was also found that laser modification caused a slight deterioration of the properties in comparison with the diffusion borided layer. However, the laser modification process resulted in the production of a much thicker layer.
Abstract. In the aviation industry the nickel-based superalloys such as Waspaloy are very often used. Conventional machining of this alloys is difficult and expensive. Therefore a Waspaloy requires the new techniques for machining like e.g. Laser Assisted Machining (LAM). New development directions of mechanical engineering are focusing on this type of hybrid machining, where materials are heated and cut in the single process. LAM enables increasing the material machinability through the increase of its temperature in cutting zone. It is assumed that additional increased temperature in the contact zone between surface of material and cutting tool causes the increase of machinability. This paper presents the results of laser heat treatment process on Waspaloy material. The influence of laser heat treatment parameters on the surface condition and selected properties of Waspaloy were analyzed. Laser heat treatment was carried out using diode laser with nominal power equaled to 3.0 kW. The laser beam power density and its scanning laser beam velocity were analyzed. In the first step the single laser tracks were prepared and analyzed. In the second step the multiple laser tracks were prepared. The special attention was directed on change in microstructure. It was found that the laser heat treatment have significant influence on microstructure. The dendritic microstructure of Waspaloy which is characterized by a lower microhardness, causes better machinability of this material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.