In some power networks, components of frequency less than the frequency of the fundamental voltage harmonic called subharmonics or subsynchronous interharmonics occur. In this paper, the effect of voltage subharmonics on currents, power losses, speed fluctuations and electromagnetic torque is examined. The results of numerical computations using the finite element method for an induction cage motor of rated power of 5.6 MW and four motors of rated power of 200 kW with different numbers of poles are presented. An extraordinary harmful effect on high-power induction motors is demonstrated. Among other effects, voltage subharmonics cause significant torque pulsations whose frequencies may correspond to the elastic-mode natural frequency. Possible resonance can result in excessive torsional vibration and the destruction of a power train.
In a power system, the voltage waveform usually contains harmonics and sometimes interharmonics, often defined as components of frequency greater than the fundamental voltage component but not of its integer multiple. Previous studies have reported a minor effect of voltage interharmonics on a cage induction machine. This paper reveals their extraordinary harmfulness for induction motors. Namely, voltage interharmonics may cause high vibration, which can result in machine damage. In addition, interharmonics can lead to torque pulsations corresponding to the natural frequency of the first elastic mode. Consequently, possible torsional resonance may cause destruction of a power train. In this study, the results of investigations on undesirable phenomena due to interharmonics are presented for seven motors with a rated power 3 kW–5.6 MW.
Sinusoidal voltage fluctuations can be considered a specific result of the occurrence of voltage subharmonics and interharmonics, which are components of low frequency or not being an integer multiple of the frequency of the fundamental voltage harmonic. These components—symmetrical subharmonics and interharmonics—are of the same magnitude, while their frequencies are symmetrical with respect to the fundamental frequency. Depending on their phase angles, various kinds of voltage fluctuations can be distinguished: amplitude modulation, phase modulation and intermediate modulation. In this study, the effect of phase angles on noxious phenomena in induction motors was analyzed. Additionally, torque pulsations and vibrations of an induction motor under sinusoidal voltage fluctuation and a single voltage subharmonic or interharmonic were compared. The investigations were performed with the finite element method and an experimental method. Among other findings, it was found that for some phase angles torque pulsations could be about ten times higher than for other angles, roughly corresponding to the amplitude modulation.
In some power systems, voltage waveforms contain, apart from harmonics, interharmonics and subharmonics that are components of frequency less than or not an integer multiple of the fundamental frequency. Voltage subharmonics and interharmonics may be of both a positive and negative sequence, independently of their frequency. Previous papers on induction motors under subharmonics have been generally limited to the components of a positive sequence. This study deals with the effect of negative sequence subharmonics on the work of induction motors. Investigations were performed using the 2D finite element method and an experimental method. Differences between the impact of positive and negative sequence subharmonics are discussed. It was found that negative sequence voltage subharmonics can result in significant current subharmonics, torque pulsations and vibration. Further, because of possible resonance, motors that are comparatively resistant to positive sequence subharmonics might be especially sensitive to negative sequence subharmonics of the same frequency and vice versa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.