Despite deep end-to-end learning methods have shown their superiority in removing non-uniform motion blur, there still exist major challenges with the current multi-scale and scale-recurrent models: 1) Deconvolution/upsampling operations in the coarse-to-fine scheme result in expensive runtime; 2) Simply increasing the model depth with finer-scale levels cannot improve the quality of deblurring. To tackle the above problems, we present a deep hierarchical multi-patch network inspired by Spatial Pyramid Matching to deal with blurry images via a fine-tocoarse hierarchical representation. To deal with the performance saturation w.r.t. depth, we propose a stacked version of our multi-patch model. Our proposed basic multi-patch model achieves the state-of-the-art performance on the Go-Pro dataset while enjoying a 40× faster runtime compared to current multi-scale methods. With 30ms to process an image at 1280×720 resolution, it is the first real-time deep motion deblurring model for 720p images at 30fps. For stacked networks, significant improvements (over 1.2dB) are achieved on the GoPro dataset by increasing the network depth. Moreover, by varying the depth of the stacked model, one can adapt the performance and runtime of the same network for different application scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.