We show on in-plane magnetized thin films that magnetization can be switched efficiently by 180 degrees using large amplitude Rayleigh waves travelling along the hard or easy magnetic axis. Large characteristic filament-like domains are formed in the latter case. Micromagnetic simulations clearly confirm that this multi-domain configuration is compatible with a resonant precessional mechanism. The reversed domains are in both geometries several hundreds of [Formula: see text], much larger than has been shown using spin transfer torque- or field-driven precessional switching. We show that surface acoustic waves can travel at least 1 mm before addressing a given area, and can interfere to create magnetic stripes that can be positioned with a sub-micronic precision.
The resonant interaction of electrically excited travelling surface acoustic waves and magnetization has been hitherto probed through the acoustic component. In this work it is investigated using time-resolved magneto-optical detection of magnetization dynamics. To that end, we develop an experimental scheme where laser pulses are used both to generate the acoustic wave frequency and to probe magnetization dynamics thus ensuring perfect phase locking. The light polarization dependence of the signal enables to disentangle elasto-optic and magneto-optic contributions and to obtain the in-plane and out-of-plane dynamic magnetization components. Magnetization precession is proved to be driven solely by the acoustic wave. Its amplitude is shown to resonate at the same field at which we detect piezo-electrically the resonant attenuation of the acoustic wave, clearly evidencing the magneto-acoustic resonance with high sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.