Abstract. A short overview of the theoretical and experimental works on the polymer-colloid mixtures is given. The behaviour of a dilute solution of linear and ring polymers in confined geometries like slit of two parallel walls or in the solution of mesoscopic colloidal particles of big size with different adsorbing or repelling properties in respect to polymers is discussed. Besides, we consider the massive field theory approach in fixed space dimensions d = 3 for the investigation of the interaction between long flexible polymers and mesoscopic colloidal particles of big size and for the calculation of the correspondent depletion interaction potentials and the depletion forces between confining walls. The presented results indicate the interesting and nontrivial behavior of linear and ring polymers in confined geometries and give possibility better to understand the complexity of physical effects arising from confinement and chain topology which plays a significant role in the shaping of individual chromosomes and in the process of their segregation, especially in the case of elongated bacterial cells. The possibility of using linear and ring polymers for production of new types of nano-and micro-electromechanical devices is analyzed.
We have used Molecular Dynamics simulations to obtain the monomer density profiles for real linear and ring polymer chains of 360 monomers length with different topological structures such as simple knots: 31, 61, 91, 10124, complex knots 313151 and twisted knots with n = 10 and n = 20 in a slit geometry of two parallel walls with one attractive and another repulsive surface. We have used Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) software to perform simulations with the Verlet integration algorithm. The interactions between monomers were simulated as Lennard-Jones 12-6 potential, for bonds we have used Finitely Extensible Nonlinear Elastic (FENE) potential and the interaction with the walls was taken into account via Lennard-Jones 9-3 potential. We observed that topologically complex polymers have lower monomer density profiles near the attractive wall, but at some distance in the direction to the repulsive wall this tendency changes to the opposite. We showed that most complex twisted knots have two maxima in narrow slits. In the wide slits we do not observe such relation for twisted knots at higher temperatures. These results are important for better understanding the nature of the depletion forces which arise in a slit geometry of two parallel walls with one attractive and one repulsive wall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.