This paper proposes the first known to us iris recognition methodology designed specifically for post-mortem samples. We propose to use deep learning-based iris segmentation models to extract highly irregular iris texture areas in post-mortem iris images. We show how to use segmentation masks predicted by neural networks in conventional, Gabor-based iris recognition method, which employs circular approximations of the pupillary and limbic iris boundaries. As a whole, this method allows for a significant improvement in post-mortem iris recognition accuracy over the methods designed only for ante-mortem irises, including the academic OSIRIS and commercial IriCore implementations. The proposed method reaches the EER less than 1% for samples collected up to 10 hours after death, when compared to 16.89% and 5.37% of EER observed for OSIRIS and IriCore, respectively. For samples collected up to 369 hours post-mortem, the proposed method achieves the EER 21.45%, while 33.59% and 25.38% are observed for OSIRIS and IriCore, respectively. Additionally, the method is tested on a database of iris images collected from ophthalmology clinic patients, for which it also offers an advantage over the two other algorithms. This work is the first step towards post-mortem-specific iris recognition, which increases the chances of identification of deceased subjects in forensic investigations. The new database of post-mortem iris images acquired from 42 subjects, as well as the deep learning-based segmentation models are made available along with the paper, to ensure all the results presented in this manuscript are reproducible.
This paper presents a unique study of post-mortem human iris recognition and the first known to us database of near-infrared and visible-light iris images of deceased humans collected up to almost 17 days after death. We used four different iris recognition methods to analyze the dynamics of iris quality decay in short-term comparisons (samples collected up to 60 hours after death) and longterm comparisons (for samples acquired up to 407 hours after demise). This study shows that post-mortem iris recognition is possible and occasionally works even 17 days after death. These conclusions contradict a promulgated rumor that iris is unusable shortly after decease. We make this dataset publicly available to let others verify our findings and to research new aspects of this important and unfamiliar topic. We are not aware of any earlier papers offering post-mortem human iris images and such comprehensive analysis employing four different matchers.
This paper presents a unique analysis of post-mortem human iris recognition. Post-mortem human iris images were collected at the university mortuary in three sessions separated by approximately 11 hours, with the first session organized from 5 to 7 hours after demise. Analysis performed for four independent iris recognition methods shows that the common claim of the iris being useless for biometric identification soon after death is not entirely true. Since the pupil has a constant and neutral dilation after death (the so called "cadaveric position"), this makes the iris pattern perfectly visible from the standpoint of dilation. We found that more than 90% of irises are still correctly recognized when captured a few hours after death, and that serious iris deterioration begins approximately 22 hours later, since the recognition rate drops to a range of 13.3-73.3% (depending on the method used) when the cornea starts to be cloudy. There were only two failures to enroll (out of 104 images) observed for only a single method (out of four employed in this study). These findings show that the dynamics of postmortem changes to the iris that are important for biometric identification are much more moderate than previously believed. To the best of our knowledge, this paper presents the first experimental study of how iris recognition works after death, and we hope that these preliminary findings will stimulate further research in this area.
This paper presents a deep-learning-based method for iris presentation attack detection (PAD) when iris images are obtained from deceased people. Post-mortem iris recognition, despite being a potentially useful method that could aid forensic identification, can also pose challenges when used inappropriately, i.e. utilizing a dead organ of a person in an unauthorized way. Our approach is based on the VGG-16 architecture fine-tuned with a database of 574 post-mortem, near-infrared iris images from the Warsaw-BioBase-PostMortem-Iris-v1 database, complemented by a dataset of 256 images of live irises, collected within the scope of this study. Experiments described in this paper show that our approach is able to correctly classify iris images as either representing a live or a dead eye in almost 99% of the trials, averaged over 20 subject-disjoint, train/test splits. We also show that the post-mortem iris detection accuracy increases as time since death elapses, and that we are able to construct a classification system with APCER=0%@BPCER≈1% (Attack Presentation and Bona Fide Presentation Classification Error Rates, respectively) when only post-mortem samples collected at least 16 hours post-mortem are considered. Since acquisitions of ante-and post-mortem samples differ significantly, we applied countermeasures to minimize bias in our classification methodology caused by image properties that are not related to the PAD. This included using the same iris sensor in collection of ante-and post-mortem samples, and analysis of class activation maps to ensure that discriminant iris regions utilized by our classifier are related to properties of the eye, and not to those of the acquisition protocol. This paper offers the first known to us PAD method in a post-mortem setting, together with an explanation of the decisions made by the convolutional neural network. Along with the paper we offer source codes, weights of the trained network, and a dataset of live iris images to facilitate reproducibility and further research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.