Motivation: Controlled vocabularies such as the Medical Subject Headings (MeSH) thesaurus and the Gene Ontology (GO) provide an efficient way of accessing and organizing biomedical information by reducing the ambiguity inherent to free-text data. Different methods of automating the assignment of MeSH concepts have been proposed to replace manual annotation, but they are either limited to a small subset of MeSH or have only been compared with a limited number of other systems.Results: We compare the performance of six MeSH classification systems [MetaMap, EAGL, a language and a vector space model-based approach, a K-Nearest Neighbor (KNN) approach and MTI] in terms of reproducing and complementing manual MeSH annotations. A KNN system clearly outperforms the other published approaches and scales well with large amounts of text using the full MeSH thesaurus. Our measurements demonstrate to what extent manual MeSH annotations can be reproduced and how they can be complemented by automatic annotations. We also show that a statistically significant improvement can be obtained in information retrieval (IR) when the text of a user's query is automatically annotated with MeSH concepts, compared to using the original textual query alone.Conclusions: The annotation of biomedical texts using controlled vocabularies such as MeSH can be automated to improve text-only IR. Furthermore, the automatic MeSH annotation system we propose is highly scalable and it generates improvements in IR comparable with those observed for manual annotations.Contact: trieschn@ewi.utwente.nlSupplementary information: Supplementary data are available at Bioinformatics online.
BackgroundDue to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events.ResultsThis article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard.ConclusionsThe BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring.
Summary: Search engines running on MEDLINE abstracts have been widely used by biologists to find publications that are related to their research. The existing search engines such as PubMed, however, have limitations when applied for the task of seeking textual evidence of relations between given concepts. The limitations are mainly due to the problem that the search engines do not effectively deal with multi-term queries which may imply semantic relations between the terms. To address this problem, we present MedEvi, a novel search engine that imposes positional restriction on occurrences matching multi-term queries, based on the observation that terms with semantic relations which are explicitly stated in text are not found too far from each other. MedEvi further identifies additional keywords of biological and statistical significance from local context of matching occurrences in order to help users reformulate their queries for better results.Availability: http://www.ebi.ac.uk/tc-test/textmining/medevi/Contact: kim@ebi.ac.uk
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.