To understand better the factors contributing to keratoconus (KTCN), we performed comprehensive transcriptome profiling of human KTCN corneas for the first time using an RNA-Seq approach. Twenty-five KTCN and 25 non-KTCN corneas were enrolled in this study. After RNA extraction, total RNA libraries were prepared and sequenced. The discovery RNA-Seq analysis (in eight KTCN and eight non-KTCN corneas) was conducted first, after which the replication RNA-Seq experiment was performed on a second set of samples (17 KTCN and 17 non-KTCN corneas). Over 82% of the genes and almost 75% of the transcripts detected as differentially expressed in KTCN and non-KTCN corneas were confirmed in the replication study using another set of samples. We used these differentially expressed genes to generate a network of KTCN-deregulated genes. We found an extensive disruption of collagen synthesis and maturation pathways, as well as downregulation of the core elements of the TGF-β, Hippo, and Wnt signaling pathways influencing corneal organization. This first comprehensive transcriptome profiling of human KTCN corneas points further to a complex etiology of KTCN.
Keratoconus (KTCN), a non-inflammatory corneal disorder characterized by stromal thinning, represents a major cause of corneal transplantations. Genetic and environmental factors have a role in the etiology of this complex disease. Previously reported linkage analysis revealed that chromosomal region 13q32 is likely to contain causative gene(s) for familial KTCN. Consequently, we have chosen eight positional candidate genes in this region: MBNL1, IPO5, FARP1, RNF113B, STK24, DOCK9, ZIC5 and ZIC2, and sequenced all of them in 51 individuals from Ecuadorian KTCN families and 105 matching controls. The mutation screening identified one mutation and three sequence variants showing 100% segregation under a dominant model with KTCN phenotype in one large Ecuadorian family. These substitutions were found in three different genes: c.2262A4C (p.Gln754His) and c.720+43A4G in DOCK9; c.2377-132A4C in IPO5 and c.1053+29G4C in STK24. PolyPhen analyses predicted that c.2262A4C (Gln754His) is possibly damaging for the protein function and structure. Our results suggest that c.2262A4C (p.Gln754His) mutation in DOCK9 may contribute to the KTCN phenotype in the large KTCN-014 family.
ABSTRACT.Purpose: Keratoconus (KTCN) is a degenerative disorder characterized by stromal thinning and protrusion of the cornea, resulting in severe impairment of visual function. A recent study proposed that rare heterozygous mutations in ZNF469 determine KTCN aetiology. Methods: To investigate the contribution of ZNF469 to KTCN, we Sanger sequenced ZNF469 in 42 unrelated Polish patients with KTCN and 49 Polish individuals with high myopia (HM) and compared the results with whole-exome sequencing (WES) data performed in 268 Polish individuals without ocular abnormalities. Results: The average number of ZNF469 non-synonymous variants was 16.31 and 16.0 for individuals with KTCN and HM, respectively (p = 0.3724). All identified variants were previously reported. Alternative allele frequency (AAF) was determined based on the WES results. Among missense variants, only one (rs528085780) has AAF ≤ 0.001 and was identified in one patient with sporadic KTCN. However, the resulting Arg1864Lys substitution was not predicted to be deleterious. Conclusion: In summary, we have not found a significant enrichment of sequence variants in ZNF469 in Polish patients with KTCN. High prevalence of ZNF469 variants identified in our KTCN group is typical for a common genetic variation observed in general population. Our findings indicate that variation in ZNF469 is not responsible for KTCN and other genetic variants are involved in the development and progression of this disease in Polish patients.
Our investigation showed that KTCN-related sequence variants of analyzed genes were found in a very small proportion of the studied patients indicating that genes other than VSX1, TGFBI, DOCK9, IPO5, and STK24 are involved in the development and progression of KTCN in Polish patients. Our results support the hypothesis about the genetic heterogeneity of KTCN.
Background Keratoconus (KTCN) is a protrusion and thinning of the cornea, resulting in loss of visual acuity. The etiology of KTCN remains unclear. The purpose of this study was to assess the potential involvement of new genetic variants in KTCN etiology based on both the genomic and transcriptomic findings recognized in the same corneal tissues. Methods Corneal tissues derived from five unrelated Polish individuals with KTCN were examined using exome sequencing (ES), followed by enrichment analyses. For comparison purposes, the datasets comprising ES data of five randomly selected Polish individuals without ocular abnormalities and five Polish patients with high myopia were used. Expression levels of selected genes from the overrepresented pathways were obtained from the previous RNA-Seq study. Results Exome capture discovered 117 potentially relevant variants that were further narrowed by gene overrepresentation analyses. In each of five patients, the assessment of functional interactions revealed rare (MAF ≤ 0.01) DNA variants in at least one gene from Wnt signaling (VANGL1, WNT1, PPP3CC, LRP6, FZD2) and focal adhesion (BIRC2, PAK6, COL4A4, PPP1R12A, PTK6) pathways. No genes involved in pathways enriched in KTCN corneas were overrepresented in our control sample sets. Conclusions The results of this first pilot ES profiling of human KTCN corneas emphasized that accumulation of sequence variants in several genes from Wnt signaling and/or focal adhesion pathways might cause the phenotypic effect and further points to a complex etiology of KTCN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.