Degradation of poly[(1,4-butylene terephthalate)-co-(1,4-butylene adipate)] (Ecoflex, BTA) monofilaments (rods) in standardized sandy soil was investigated. Changes in the microstructure and chemical composition distribution of the degraded BTA samples were evaluated and changes in the pH and salinity of postdegradation soil, as well as the soil phytotoxicity impact of the degradation products, are reported. A macroscopic and microscopic evaluation of the surface of BTA rod samples after specified periods of incubation in standardized soil indicated erosion of the surface of BTA rods starting from the fourth month of their incubation, with almost total disintegration of the incubated BTA material observed after 22 months. However, the weight loss after this period of time was about 50% and only a minor change in the M(w) of the investigated BTA samples was observed, along with a slight increase in the dispersity (from an initial 2.75 up to 4.00 after 22 months of sample incubation). The multidetector SEC and ESI-MS analysis indicated retention of aromatic chain fragments in the low molar mass fraction of the incubated sample. Phytotoxicity studies revealed no visible damage, such as necrosis and chlorosis, or other inhibitory effects, in the following plants: radish, cres, and monocotyledonous oat, indicating that the degradation products of the investigated BTA copolyester are harmless to the tested plants.
The degradation of poly[(R,S)-3-hydroxybutyrate], a-PHB, binary blends with natural PHB (n-PHB) and poly(L-lactic acid), PLLA, respectively, has been investigated in soil. In such a natural environment, a-PHB blend component was found to biodegrade. The degradation of a-PHB-containing blends proceeded faster than that of respective plain n-PHB and PLLA. The molecular weight decrease of the n-PHB component was higher, while the same rate of bioerosion of both components was observed for the a-PHB/n-PHB binary blend. For the a-PHB blend with PLLA, the weight loss was accompanied by blend composition changes and the decrease of a-PHB content. However, the PLLA molecular weight decrease was lower in the blend in comparison with the plain PLLA sample. The increase of the number of microorganisms particularly observed for the soil where binary blends were incubated indicates that microbial degradation of a-PHB takes place. The terrestrial plant growth test (cress and barley) demonstrates no environmental toxicity of the materials studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.