Abstract-This work presents a method of classification of text documents using deep neural network with LSTM (long shortterm memory) units. We have tested different approaches to build feature vectors, which represent documents to be classified: we used feature vectors constructed as sequences of words included in the documents, or, alternatively, we first converted words into vector representations using word2vec tool and used sequences of these vector representations as features of documents. We evaluated feasibility of this approach for the task of subject classification of documents using a collection of Wikipedia articles representing 7 subject categories. Our experiments show that the approach based on an LSTM network with documents represented as sequences of words coded into word2vec vectors outperformed a standard, bag-of-word approach with documents represented as frequency-of-words feature vectors.
In this paper we propose a novel method to incorporate partial evidence in the inference of deep convolutional neural networks. Contrary to the existing, top performing methods, which either iteratively modify the input of the network or exploit external label taxonomy to take the partial evidence into account, we add separate network modules ("Plugin Networks") to the intermediate layers of a pretrained convolutional network. The goal of these modules is to incorporate additional signal, i.e. information about known labels, into the inference procedure and adjust the predicted output accordingly. Since the attached plugins have a simple structure, consisting of only fully connected layers, we drastically reduced the computational cost of training and inference. At the same time, the proposed architecture allows to propagate information about known labels directly to the intermediate layers to improve the final representation. Extensive evaluation of the proposed method confirms that our Plugin Networks outperform the state-of-the-art in a variety of tasks, including scene categorization, multi-label image annotation and semantic segmentation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.