Brain-Computer Interfaces (BCIs) transfer human brain activities into computer commands and enable a communication channel without requiring movement. Among other BCI approaches, steady-state visual evoked potential (SSVEP)-based BCIs have the potential to become accurate, assistive technologies for persons with severe disabilities. Those systems require customization of different kinds of parameters (e.g., stimulation frequencies). Calibration usually requires selecting predefined parameters by experienced/trained personnel, though in real-life scenarios an interface allowing people with no experience in programming to set up the BCI would be desirable. Another occurring problem regarding BCI performance is BCI illiteracy (also called BCI deficiency). Many articles reported that BCI control could not be achieved by a non-negligible number of users. In order to bypass those problems we developed a SSVEP-BCI wizard, a system that automatically determines user-dependent key-parameters to customize SSVEP-based BCI systems. This wizard was tested and evaluated with 61 healthy subjects. All subjects were asked to spell the phrase “RHINE WAAL UNIVERSITY” with a spelling application after key parameters were determined by the wizard. Results show that all subjects were able to control the spelling application. A mean (SD) accuracy of 97.14 (3.73)% was reached (all subjects reached an accuracy above 85% and 25 subjects even reached 100% accuracy).
Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques.
Brain-Computer Interface (BCI) systems use brain activity as an input signal and enable communication without requiring bodily movement. This novel technology may help impaired patients and users with disabilities to communicate with their environment. Over the years, researchers investigated the performance of subjects in different BCI paradigms, stating that 15%–30% of BCI users are unable to reach proficiency in using a BCI system and therefore were labelled as BCI illiterates. Recent progress in the BCIs based on the visually evoked potentials (VEPs) necessitates re-considering of this term, as very often all subjects are able to use VEP-based BCI systems. This study examines correlations among BCI performance, personal preferences, and further demographic factors for three different modern visually evoked BCI paradigms: (1) the conventional Steady-State Visual Evoked Potentials (SSVEPs) based on visual stimuli flickering at specific constant frequencies (fVEP), (2) Steady-State motion Visual Evoked Potentials (SSmVEP), and (3) code-modulated Visual Evoked Potentials (cVEP). Demographic parameters, as well as handedness, vision correction, BCI experience, etc., have no significant effect on the performance of VEP-based BCI. Most subjects did not consider the flickering stimuli annoying, only 20 out of a total of 86 participants indicated a change in fatigue during the experiment. 83 subjects were able to successfully finish all spelling tasks with the fVEP speller, with a mean (SD) information transfer rate of 31.87 bit/min (9.83) and an accuracy of 95.28% (5.18), respectively. Compared to that, 80 subjects were able to successfully finish all spelling tasks using SSmVEP, with a mean information transfer rate of 26.44 bit/min (8.04) and an accuracy of 91.10% (6.01), respectively. Finally, all 86 subjects were able to successfully finish all spelling tasks with the cVEP speller, with a mean information transfer rate of 40.23 bit/min (7.63) and an accuracy of 97.83% (3.37).
Brain-Computer Interfaces (BCIs) based on visual evoked potentials (VEPs) allow high communication speeds and accuracies. The fastest speeds can be achieved if targets are identified in a synchronous way (i.e., after a pre-set time period the system will produce a command output). The duration a target needs to be fixated on until the system classifies an output command affects the overall system performance. Hence, extracting a data window dedicated for the classification is of critical importance for VEP-based BCIs. Secondly, unintentional fixation on a target could easily lead to its selection. For the practical usability of BCI applications it is desirable to distinguish between intentional and unintentional fixations. This can be achieved by using threshold-based target identification methods. The study explores personalized dynamic classification time windows for threshold-based time synchronous VEP BCIs. The proposed techniques were tested employing the SSVEP and the c-VEP paradigm. Spelling performance was evaluated using an 8-target dictionary-supported BCI utilizing an n-gram word prediction model. The performance of twelve healthy participants was assessed with the information transfer rate (ITR) and accuracy. All participants completed sentence spelling tasks, reaching average accuracies of 94% and 96.3% for the c-VEP and the SSVEP paradigm, respectively. Average ITRs around 57 bpm were achieved for both paradigms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.